

CONVERTIA PTY LTD

Preliminary Site Investigation with Limited Sampling

2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

Report E23668.E01_Rev1 07 February 2018

REPORT DISTRIBUTION

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

El Report No.: E23668.E01_Rev1 Date: 07 February 2018

Copies		Recipient
1.	Soft Copy (PDF – Secured, issued by email)	Mr John Mouawad Convertia Pty Ltd Suite 1, 17 Wilga Street BURWOOD NSW 2134
1.	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author:

Technical Reviewer:

mad

CLARE MADIGAN Environmental Scientist

N. Las X

NATHAN FOSTER Senior Environmental Scientist

Revision	Details	Date	Amended By
0	Original	06 February 2018	-
1	Revision – Client Recommendations	07 February 2018	СМ

© 2018 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background and Objectives

Mr John Mouawad of Convertia Pty Ltd ("the Client") engaged El Australia (El) to conduct a Preliminary Site Investigation with Limited Sampling (PSI) for the property located at address 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW ('the site'). This environmental assessment is required to appraise the environmental condition of the site as part of a planning proposal of the site.

At the time of this assessment, the site was occupied by five residential dwellings and a commercial building. The site covered a total area of approximately 4,885m².

The main objective of this investigation was to preliminary characterise the environmental conditions of the site on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources, and limited sampling from the site.

Key Findings

The property located at 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW was the subject of a Preliminary Site Investigation with Limited Sampling. El understand that this assessment is required to appraise the environmental condition of the site as part of a planning proposal of site for the proposed construction of four adjoining ten to fifteen-storey mixed-use development buildings with a multi-level basement car park covering entire site footprint, and to evaluate potential for on-site contamination associated with current and former land uses.

Based on the findings of this assessment, it is concluded that:

- The site is located approximately 11 km west of Sydney Central Business District (CBD), within the Local Government Area of Strathfield Council (see Figure 1). The land parcel is also identified as Lot 100 DP807807, SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558, covering a total area of approximately 4,885m², as depicted in the site plan presented as Figure 2;
- Historical records indicate the site appears to have been used for residential and commercial use since at least the early 1930s. The residential apartment dwellings appear to be evident on site from at least 1943, with the service station occupying the eastern side of the site from the mid-1990s. Site use has remained the same since 1990s to present;
- The site and surrounding properties are not reported as being subject to regulation in relation to environmental impacts, as documented in the EPA public registers;
- Verbal confirmation of SafeWork NSW records and visual evidence indicated UPSS's to be located on site at the service station (9-11 Albert Road);
- A request to access Strathfield Council's site history records was initiated on 16 January 2018, however Council approval was still pending at the time of writing. Should pertinent information be identified upon receipt of Council records, an addendum to the PSI will be prepared and issued;
- A site walkover inspection identified the sites current uses consist of residential and commercial purposes, potential asbestos containing material (ACM) was noted within some of the buildings materials, illegal dumping had previously occurred on site and strong effluent odour and water leakage was evident along the driveway at 11-13 Albert Road;
- This CSM model was reviewed and further developed by EI which was then analysed in conjunction to the information gathered from the site walkover inspection and site history review. From this analysis EI considered that the recommendation made by EI of completing an intrusive site investigation was warranted to conduct sampling using systematic sampling regime across the site;

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

- Soil sampling and analysis were conducted at five test bore locations. The sub-surface layers comprised fill and residual soils overlying clay and weathered shale;
- Results of soil samples collected from soil test boreholes indicated the following:
 - The reported concentration of priority metals were reported below the adopted human and ecological health criteria, with the following exceptions: Lead BH102), Copper (BH101 and BH102), and Zinc (BH102);
 - Total recoverable hydrocarbons (TRH), BTEX, and PAH concentrations were all below the corresponding NEPM 2013 health-based criteria's;
 - No pesticides (OCPs, OPPs) or PCBs were reported; and
 - Asbestos was not identified in laboratory analysed soil samples.
- Groundwater was not encountered by EI during the investigation due to refusal in weathered shale. Three shallow groundwater monitoring wells were installed; however they were all reported dry at the time of sampling. Groundwater flow direction was not calculated during this investigation, however, groundwater is anticipated to flow north-east towards Parramatta River; and
- We note that the following data gaps, as outlined in the CSM in **Section 5.4** remain that require closure:
 - Further intrusive investigation of the site to satisfy the sampling density requirements of EPA (1995);
 - The quality of soils beneath building structure areas of the site not assessed during this DSI.
 Provided that the majority of the site is to be bulk excavated for the basement, the supplementary investigation may be carried out as part of the waste classification for excavated materials;
 - The condition of soil and groundwater in the immediate vicinity of current and historical UPSS areas, including bowser islands, fill points, and fuel lines;
 - The quality of groundwater onsite and down-hydraulic gradient of the service station site, including background groundwater quality migrating onto the site;
 - Confirmation of groundwater flow direction by survey of groundwater monitoring wells by a licensed surveyor;
 - Potential presence of hazardous materials present within the existing structures; and
 - The suitability of retained deep soils to be used for landscaping purposes on the northern perimeter of the site.

Based on the findings from this PSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), EI conclude that in light of the site access restrictions and constraints, several data gaps remain that will require closure to satisfactorily characterise the fill soils. In view of the proposed development scope, and currently available information, EI consider that the site can be made suitable for the proposed land use,

provided recommendations detailed in **Section 12** are implemented at a future development application stage. It should be noted that this is not required at the planning proposal stage.

Conclusions and Recommendations

Based on the findings of this PSI, the following recommendations will be required to be implemented during site redevelopment to confirm the site as being suitable for the proposed development, at a future development application stage:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Review of available environmental reports previously prepared for the service station site;
- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Design supplementary investigations to close the data gaps identified during this investigation;
 - Outline the remediation requirements for UPSS decommissioning, and remediation and validation activities in accordance with the *POEO (UPSS) Regulation 2014* and associated guidance documents, and other contamination that may be identified during data gap closure investigations;
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the *Waste Classification Guidelines* (EPA, 2014); and
 - Provide a SAQP for the validation of remediation activities performed on-site.
- Undertake supplementary investigations, and subsequent remediation and validation works for the site, as outlined in the RAP. El note that due to current site constrains, the additional investigations and remediation works may be conducted after site demolition when access to areas of environmental concern is made available;
- Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	I
1.	INTRODUCTION1.1BACKGROUND AND PURPOSE1.2PROPOSED DEVELOPMENT1.3REGULATORY FRAMEWORK1.4PROJECT OBJECTIVES1.5SCOPE OF WORKS	1 1 1 1 1 2
2.	SITE DESCRIPTION2.1PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING2.2LOCAL LAND USE2.3REGIONAL SETTING2.4GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE2.5SITE WALKOVER INSPECTION	3 3 4 5 5
3.	PREVIOUS INVESTIGATIONS	6
4.	 SITE HISTORY AND SEARCHES 4.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW 4.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW 4.3 COUNCIL INFORMATION 4.4 SAFEWORK NSW DANGEROUS GOODS REGISTER RECORDS 4.5 EPA ONLINE RECORDS 4.6 OTHER INFORMATION SOURCES 	7 7 13 14 14 14 14 15
5.	 CONCEPTUAL SITE MODEL 5.1 POTENTIAL CONTAMINATION SOURCES 5.2 CONTAMINANTS OF POTENTIAL CONCERN 5.3 POTENTIAL SOURCES, RECEPTORS AND EXPOSURE PATHWAYS 5.4 DATA GAPS 	16 16 16 16 16 18
6.	 SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP) 6.1 DATA QUALITY OBJECTIVES (DQO) 6.2 DATA QUALITY INDICATORS 	19 19 24
7.	ASSESSMENT METHODOLOGY 7.1 SAMPLING RATIONALE 7.2 INVESTIGATION CONSTRAINTS 7.3 ASSESSMENT CRITERIA 7.4 SOIL INVESTIGATION 7.5 GROUNDWATER INVESTIGATION	25 25 25 25 25 26 27
8.	DATA QUALITY ASSESSMENT 8.1 QUALITY OVERVIEW	29 30
9.	 RESULTS 9.1 Soil Investigation Results 9.2 Groundwater Investigation Results 9.3 Laboratory Analytical Results 	31 31 32 32
10.	 SITE CHARACTERISATION 10.1 UNDERGROUND PETROLEUM STORAGE SYSTEM 10.2 HEAVY METALS IN SOIL 10.3 ASBESTOS RISKS IN SOIL 10.4 REVIEW OF CONCEPTUAL SITE MODEL 	35 35 35 35 35 36
11.	CONCLUSIONS	37
12.	RECOMMENDATIONS	39
13.	STATEMENT OF LIMITATIONS	40

REFERENCES

ABBREVIATIONS

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	3
TABLE 2-2	LOCAL LAND USE	4
TABLE 2-3	TOPOGRAPHICAL, GEOLOGICAL, SOIL LANDSCAPE AND	
	HYDROGEOLOGICAL INFORMATION	4
TABLE 4-1	SUMMARY OF OWNERS	7
TABLE 4-2	SUMMARY OF HISTORICAL AERIAL PHOTOGRAPHY	13
TABLE 4-3	SUMMARY OF AERIAL PHOTOGRAPH REVIEW	13
TABLE 5-1	CONCEPTUAL SITE MODEL	17
TABLE 6-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	20
TABLE 6-2	DATA QUALITY INDICATORS	24
TABLE 7-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	27
TABLE 7-2	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	27
TABLE 7-3	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	28
TABLE 8-1	QUALITY CONTROL PROCESS	29
TABLE 9-1	GENERALISED SUBSURFACE PROFILE (MBGL)	31
TABLE 9-2	MONITORING WELL CONSTRUCTION DETAILS	32
TABLE 9-3	SUMMARY OF SOIL ANALYTICAL RESULTS	33

FIGURES

Figure 1	Locality Plan
Figure 2	Sampling Location Plan

TABLES

Table T1 Soil Laboratory Analytical Results

Table T2 RPD QAQC

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS

APPENDIX B NR ATLAS GROUNDWATER BORE SEARCH

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D HISTORICAL PROPERTY TITLES SEARCH

APPENDIX E BOREHOLE LOGS

APPENDIX F FIELD DATA SHEETS

APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX H LABORATORY ANLYTICAL REPORTS

APPENDIX I QA/QC ASSESSMENT

APPENDIX J LABORATORY QA/QC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr John Mouawad engaged El Australia (El) to conduct a Preliminary Site Investigation with Limited Sampling (PSI) for site characterisation purposes of the land parcel with street address 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW (herein referred to as the 'the site').

The site is located approximately 11 km west of Sydney Central Business District (CBD), within the Local Government Area of Strathfield Council (see **Figure 1**). The land parcel is also identified as Lot 100 DP807807, SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558, covering a total area of approximately 4,885 m², as depicted in the site plan presented as **Figure 2**.

El understand that this assessment is required as part of a planning proposal to investigate the potential for contamination to be present at the site by the completion of a qualitative appraisal of available historical site information, and limited intrusive investigation of soils and groundwater.

1.2 PROPOSED DEVELOPMENT

Based on the proposed development plans (Ref. JBA / Kennedy Associates Architects, Job No. 1361), the site has been designated for the construction of four adjoining ten to fifteen-storey mixeduse development buildings, with a multi-level basement car park covering the entire site footprint (as illustrated in the proposed development plans attached in **Appendix A**). It is understood that small perimeter deep soil landscaped areas area is proposed along the eastern site boundary.

1.3 **REGULATORY FRAMEWORK**

The following regulatory framework and guidelines were considered during the preparation of this report:

- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 **PROJECT OBJECTIVES**

The main objectives of this assessment are:

- To evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources (Preliminary Site Investigation); and
- To investigate potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants of potential concern (COPC).

A further objective, should site contamination be confirmed, will be to make for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In accordance with EI fee proposal P15241.1 (dated 14 December 2017), to achieve the above objectives, the following scope of work was undertaken:

1.5.1 Desktop Study

Preliminary Ste Investigation (PSI):

- A review of relevant hydrogeological and soil landscape maps for the project area;
- A review of all previous environmental reports completed at the site;
- Detailed site walkover inspection;
- Search of historical aerial photographs archived at NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area;
- Search of SafeWork NSW records for information relating to possible underground tank approvals and locations, and dangerous goods stored onsite;
- Site history survey involving a detailed search of Strathfield Council records for information relating to operational site history;
- A land titles search, also conducted through NSW Land and Property Information;
- A review of existing underground services on site; and
- A search through the NSW database records to confirm that there are no statutory notices current on the site under the *Contaminated Land Management Act 1997* or *Protection of the Environment Operations Act 1997*.

Limited Sampling:

- Construction of test boreholes at five (5) locations distributed in a targeted sampling approach across accessible areas of the site;
- Construction of three (3) groundwater monitoring bores drilled to a maximum depth of 9 m (or refusal) both up gradient and downgradient of the proposed redevelopment area. Groundwater monitoring bores will be constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants off-site;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the three newly constructed groundwater monitoring bores;
- Laboratory analysis of selected soil samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program; and
- Data interpretation and reporting.

1.5.2 Data Analysis and Reporting

Following the desktop assessment and site inspection, this PSI report was prepared generally in accordance with the OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*. This report document the contaminated land assessment and discusses the findings with respect to potential risks to human health, the environment and the aesthetic enjoyment of the land and provides recommendations regarding further assessment to enable mitigation/management of any risks.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description
Street Address	2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW
Location Description	Approx. 11 km west of Sydney Central Business District (CBD), bound by a railway corridor north, Raw Square east, Albert Road south and Pilgrim Avenue west. The site is currently occupied by Coles Express Service Station on the eastern portion, whilst the remainder of the site is occupied with three two-storey brick dwellings and two individual brick residential dwellings with associated concrete hardstand and grassed carparks.
Site Coordinates	North-eastern corner of site (datum GDA94-MGA56):
	Easting: 323586.107,
	Northing: 6250536.862
	(Source: http://maps.six.nsw.gov.au)
Site Area	Approx. 4,885 m ²
Lot and Deposited Plan (DP)	Lot 100 DP807807, SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558.
State Survey Marks	Three State Survey (SS) marks are situated in close proximity to the site:
	 SS118033 (Approx. 36m south of site on the corner of Raw Square and Everton Road);
	 SS118032 (Approx. 75m north-east of site on the roundabout of Raw Square and Everton Road); and
	SS44174 (Approx. 89m west of site on Elva Street).
	(Source: http://maps.six.nsw.gov.au/).
Local Government Authority	Strathfield Council
Parish	Concord
County	Cumberland
Current Zoning	B4 – Mixed Use Zone
	(Strathfield Local Environmental Plan 2018)

Table 2-1 Site Identification, Location and Zoning

2.2 LOCAL LAND USE

The site is situated within an area of mixed uses on surrounding land as described in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified.

Table 2-2 Local Land Use

Direction	Land Use Description	Sensitive Receptors (& distance from site)
North	Railway Corridor, followed by Leicester Avenue	Railway Corridor (10 m North) Grassed Field (140 m North)
South	Albert Road, followed by individual residential dwellings and a multi-storey building	Individual Residential Dwellings (35 m South) Strathfield Plaza (200 m SE)
East	Raw Square, followed by multi-storey mixed-use apartment building and Strathfield Train Station	Multi-storey mixed-use apartment dwelling (40 m SE) Strathfield Station (175 m SE) Strathfield Square (215 m SE)
West	Pilgrim Avenue, followed by residential apartment dwellings	Two-storey residential apartment dwellings (25 m West) Powells Creek (140 m NW) Laker Reserve (150 m NW)

2.3 REGIONAL SETTING

Local topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Topography	The site topography consists of gently undulating rises on Wianamatta Group shales and Hawkesbury shale with local relief to 30 m and slopes are usually <5%. Crests and ridges are broad (200-600 m) and rounded with convex upper slopes grading into concave lower slopes.
Site Drainage	Site drainage is likely to be consistent with the general slope of the site towards Parramatta River
Regional Geology	The sites regional geology lies within the Wianamatta Group. It comprises Ashfield Shale which consists of laminate and dark grey siltstone and Bringelly Shale consisting of shale, with occasional calcareous claystone, laminate and coal. The unit is occasionally underlain by claystone and laminate lenses within the Hawkesbury Sandstone. Ref. 1:100 000 scale Geological Series Sheet 9130 (Sydney).
Soil Landscapes	The Soil Conservation Service of NSW Soil and Land Information of the Sydney 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the site overlies a <i>Blacktown (bt) Residual and Disturbed Terrain (xx) Landscapes</i> .
Acid Sulfate Soil Risk	The Strathfield LEP 2012 Acid Sulfate Soil Map (Sheet ASS_005) indicates that the site lies within an area classified as <i>Class 5</i> acid sulfate soils. Class 5 is classified as works within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 m Australian Height Datum (AHD) and by which the watertable is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land.
	With reference to the 1:25 000 scale Prospect-Parramatta River Acid Sulfate Soil Risk Map – Edition Two (Ref. Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
Nearest Surface Water Feature	Powells Creek, approx. 140 m north-west of the site.

 Table 2-3
 Topographical, Geological, Soil Landscape and Hydrogeological Information

Attribute Description

Anticipated Groundwater Flow Direction North-east, towards Parramatta River

An online search of registered groundwater bores was conducted by EI on 17 January 2018 through the NSW Department of Primary Industry – Office of Water (Ref.

http://allwaterdata.water.nsw.gov.au/water.stm). There were no registered bores within a 500 m radius of the site.

2.5 SITE WALKOVER INSPECTION

Site observations were recorded during a site walkover inspection of the site on 23 January 2018. A summary of site observations is detailed below and site photographs taken during the inspection are present in **Appendix C**. Site observations indicated the following:

- The current site use consists of three residential unit blocks, two individual residential dwellings and Coles Service Station. However, during the investigation we were unable to gain access to the service station;
- The site consists of overgrown green vegetation (including weeds) and patchy grasses with bare soil patches present across all properties (**Appendix C**, Photograph 11);
- General slope of the site is in a slight north-east direction;
- All residential properties displayed concrete driveways in poor conditions with cracking and deformation evident. However, the concrete hardstand present at the service station was of good conditions, with minimal cracking (**Appendix C**, Photographs 4-5, 10, 14 and 18);
- There was no evidence of underground storage tanks (USTs) or underground petroleum storage systems (UPSS) on site, surrounding the residential properties. However, several fill points where evident at the service station (**Appendix C**, photograph 25);
- General litter was present across all residential properties and their surrounding lands, while remnants of brick rubble was present in the backyard of 11-13 Albert Road (Appendix C, photograph 13, 16 and 23);
- Anecdotal Information indicated the aforementioned allotment has had an issue with illegal dumping occurring;
- Potential asbestos containing material (ACM) was noted on the awnings of the residential properties (**Appendix C**, photograph 19);
- A strong effluent odour was noted at the driveway of 11-13 Albert Road. The driveway was partially flooded with water in the same area, suggesting a burst sewer drain along the driveway (**Appendix C**, photograph 17);
- No other suspicious odours or evidence of gross contamination was observed at the site; and
- No evidence indicative of groundwater monitoring wells was observed across the site.

The location of site attributes discussed above is presented in Figure 2.

3. PREVIOUS INVESTIGATIONS

El was not made aware of any previous environmental investigations conducted at the site.

4. SITE HISTORY AND SEARCHES

4.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

A historical land titles search was conducted through Scott Ashwood Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix D**. A summary of all the previous and current registered proprietors along with information obtained from the available historical aerial photographs, in relation to past potential land uses are presented in **Table 4-1**. The historical aerial photographs reviewed as part of this PSI included:

- 1930: 6 March 1930, Run 4, Map 3424, B/W, Sydney Survey Commonwealth of Australia;
- 1943: Six Maps (<u>https://maps.six.nsw.gov.au/</u>) 1943 Imagery NSW Department of Finance and Services;
- 1951: May 1951, Run 13, B/W, NSW 467-92, Lands Photo;
- 1986: 3 August 1986, Run 22, Colour, NSW 3528, Map 54, Lands Photo;
- 1994: 4 October 1994, Run 10, NSW 4244, Colour, Map 165-177, NSW Lands Photo;
- 2002: 16 March 2002, Run 10, NSW 4724, Colour, Map 110-123, NSW Lands Photo; and
- 2014: Six Maps (<u>https://maps.six.nsw.gov.au/</u>).

	Table 4-1	Summary of Owners
--	-----------	-------------------

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business
Lot A DP 100558	3 – 9-13 Albert Road & 2-6 Pilgrim Avenue, Strathfield	
30.12.1909 (1909 to 1934)	Chief Commissioner of Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Residential/ Commercial
07.03.1934 (1934 to 1934)	Arthur Clarke (Gentleman)	
24.08.1934 (1934 to 1956)	Arthur Clarke (Gentleman) Millicent Mary Clarke (Married Woman)	
04.05.1964 (1956 to 1964)	John James Timbs (Naval Lieutenant) Mary Norwood Timbs (Widow)	
04.05.1964 (1964 to 2003)	John James Timbs (Naval Lieutenant)	
19.08.2003 (2003 to 2009)	Johant (Nominees) Pty. Limited	
27.02.2009 (2009 to 2014)	Gabriel Hung Won Kang Christina Kyoung Hee Ham Kang	

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business		
03.09.2014 (2014 to Date)	# Convertia Pty Ltd			
 # Denotes Current Registered Proprietor Easements: - 04.07.1956 (G328684) – Right of Carriage Way 04.07.1956 (G328684) – Cross Easements Leases: - NIL 				
Lot B DP 100558	3 – 9-13 Albert Road & 2-6 Pilgrim Avenue, Strathfield			
30.12.1909 (1909 to 1934)	Chief Commissioner of Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Residential/ Commercial		
07.03.1934 (1934 to 1934)	Arthur Clarke (Gentleman)			
24.08.1934 (1934 to 1955)	Arthur Clarke (Gentleman) Millicent Mary Clarke (Married Woman)			
13.10.1955 (1955 to 1969)	Edna Stanley Barrett (Married Woman)			
15.10.1969 (1969 to 2002)	Angelo Prestipino (Fruiterer) Maria Prestipino (Married Woman)	Residential		
17.05.2002 (2002 to 2004)	Angelo Prestipino	Residential/ Commercial		
28.05.2004 (2004 to 2009)	Johant (Nominees) Pty. Limited			
27.02.2009 (2009 to 2014)	Gabriel Hung Won Kang Christina Kyoung Hee Ham Kang			
03.09.2014 (2014 to Date)	# Convertia Pty Ltd			
 # Denotes Current Registered Proprietor Easements: - 04.07.1956 (G328684) – Right of Carriage Way 04.07.1956 (G328684) – Cross Easements Leases: - NIL 				

Lot 100 DP 807807 - 9-13 Albert Road & 2-6 Pilgrim Avenue, Strathfield

As regards the part tinted green on attached cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business
30.12.1909 (1909 to 1929)	Chief Commissioner for Railways and Tramways Now Railway Commissioner for New South Wales	Residential/ Commercial
18.11.1929 (1929 to 1933)	Hermann Hugo Korner (Watchmaker)	_
18.04.1933 (1933 to 1958)	Martha Louise Korner (Widow) (Application by Transmission not investigated)	_
22.04.1958 (1958 to 1963)	John E. Murray Pty. Limited	_
31.07.1963 (1963 to 1963)	John Elkins Wailes (Solicitor)	
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	
As regards the pa	art tinted blue on attached cadastre	
30.12.1909 (1909 to 1929)	Chief Commissioner for Railways and Tramways Now Railway Commissioner for New South Wales	
30.04.1929 (1929 to 1931)	Selwyn George Trevellyn Neale (Estate Agent) Henry George Smith (Estate Agent) Frank Arnold Weiss (Estate Agent)	-
16.06.1931 (1931 to 1933)	Hermann Hugo Korner (Watchmaker)	
18.04.1933 (1933 to 1958)	Martha Louise Korner (Widow) (Application by Transmission not investigated)	Residential/ Commercial
31.03.1958 (1958 to 1963)	Russel Alexander Murray (Garage Proprietor)	
31.07.1963 (1963 to 1963)	John Ekins Wailes (Solicitor)	
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	Residential/ Commercial
As regards the parts tinted pink on attached Cadastre		
30.12.1909 (1909 to 1942)	Chief Commissioner for Railways and Tramways Now Railway Commissioner for New South Wales	Residential/ Commercial
17.02.1942 (1942 to 1955)	John Wilfred Cooper (Builder)	

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business
10.02.1955 (1955 to 1963)	Russel Alexander Murray (Garage Proprietor)	
31.07.1963 (1963 to 1963)	John Ekins Wailes (Solicitor)	
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	Residential
Continued as reg	ards the whole of Lot 100 DP 807807	
23.11.2016 (2016 to Date)	# Ver Custodian Pty Limited	
Easements: - NII Leases: - • 04.04.1930 (attached Cad • 11.07.1958 (25.11.1963 (• 04.07.2005 (L B966024) – Herbert Hayes (Garage Proprietor) – expired 12.06.1958 (part tinte dastre) H84860) – The Shell Company of Australia Limited – merged into the fee simp part tinted green on attached Cadastre) AB570908) – Eureka Operations Limited – expires 28.04.2024	ed green on le
- 23.11.20 option to	06 (AK932586) – Concurrent Lease – Viva Energy Australia Pty Ltd – expires 0 o purchase – also option of renewal 7 X 10 years.	7.08.2032 –
As regards Lot 8	3 DP 15917	
30.12.1909 (1909 to 1935)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Residential/ Commercial
24.05.1935 (1935 to 1936)	Ellen Amelia Spearman (Married Woman)	
09.11.1936 (1936 to 1937)	Claude Hilton Bellamy (Builder)	
18.11.1941 (1941 to 1952)	Edna Alice Houston (Widow) Now Edna Alice Englert (Married Woman) (Application by Transmission not investigated)	Residential/ Commercial
17.06.1952 (1952 to 1954)	John Thomas Williams (Patrolman)	
01.09.1954 (1954 to 1983)	Mary Adela McCrow (Spinster)	
18.04.1983 (1984 to 1986)	Edward Jones Elizabeth Anna Jones	
0.3.06.1986 (1986 to 1986)	Elizabeth Anna Jones	Residential

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business
18.08.1986	Harman Wong	Residential/
(1986 to 2014)	Linda Wong	Commerciai
12.04.2014 (2014 to Date)	# Convertia Pty Ltd	
Easements & Le	eases: - NIL	
As regards Lot	9 DP 15917	
30.12.1909 (1909 to 1938)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Residential/ Commercial
25.01.1938 (1938 to 1941)	George leonard Marlow (Salesman) Percy Charles Marlow (Storekeeper)	
20.08.1941 (1941 to 1957)	James Thomas Reeves (Retired)	
30.01.1957 (1957 to 1962)	Victor Oswald Thomas reeves (Company Manager) (Section 94 Application not investigated)	
19.06.1962 (1962 to 1975)	Arhip Mihailovich Polstchikoff (Supervisor) Antonia Polstchikoff (Married Woman)	
26.09.1975 (1975 to 1980)	Kevin Douglas Bruce (Business Proprietor) Cherie Bruce (Married Woman)	
14.10.1980 (1980 to 1986)	Kazimir Savitsky (Retired) Olga Savitsky (married Woman)	Residential
09.12.1986 (1986 to 1999)	Olga Savitsky (Widow)	Residential/ Commercial
03.11.1999 (1999 to 2008)	Sunil Lal Chhabra Shikha Lal Chhabra	
08.02.2008 (2008 to 2013)	Alpha House Pty Ltd	
07.05.2013 (2013 to Date)	# Beta House Pty Ltd	
Easements & Leases: - NIL		
As regards SP 8785		
As regards the part tinted purple on attached Cadastre		

04.11.1921 James Alston Gregg (Grazier) (1921 to 1921)

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	Associated business	
29.11.1921 (1921 to 1947)	Railway Commissioner for New South Wales Now	Residential/ Commercial	
	The Commissioner for Railways		
As regards the pa	art tinted turquoise on attached Cadastre		
30.12.1909 (1909 to 1947)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Residential/ Commercial	
As regards the pa	As regards the part tinted		
18.06.1947 (1947 to 1950)	Claude Sydney Charles Mills (Taxi Cab Proprietor) Nora Mills (Married Woman)		
14.11.1950 (1950 to 1972)	John Bandi (Storekeeper) Imra Fenyves (Storekeeper) Now Imre Harold Pine (Storekeeper)	Residential/ Commercial	
04.12.1972 (1972 to 1974)	John Bandi (Storekeeper) Ilona Bandi (Married Woman)		
15.10.1974	Registration of Strata Plan No. 8785		
Search continued as regards the Common Property areas			
15.10.1974 (1974 to Date)	# The Proprietors – Strata Plan No.8785 Now # The Owners – Strata Plan No. 8785	Residential	

Easements & Leases: - NIL

Notes:

[#] Denotes Current Registered Proprietor

Evident in **Table 4-1** the site appears to have been used for residential and commercial use since at least the early 1930s. The residential apartment dwellings appear to be evident on site from at least 1943, with the service station occupying the eastern side of the site from the mid-1990s. Site use has remained the same since 1990s to present.

Table 4-2	Summary of Historical Aerial Photography
-----------	--

Aerial Photograph	Site description based on historical aerial photographs
1930	The site appears to be occupied by a single-storey dwelling in the south-eastern corner potentially used for commercial / residential purposes. The surrounding land use consists of grassed areas, with some large trees along the railway corridor boundary.
1943	The building in the south-eastern corner of the site remains the same as per previous aerial. However, the building is surrounded by three individual residential dwellings to the north and north-west, and two two-storey buildings directly west. There appears to be a large undeveloped area within the north-eastern corner of the site.
1951	The site remains the same as previous aerial photograph.
1986	The western portion of the site is completely occupied with residential dwellings, with an additional dwelling in the far north-west corner of the site. The building previously occupying the south-eastern corner of the site has been demolished. While the vacant area in the north-eastern corner of the site has three large trees present.
1994	The western portion of the site remains the same as the previous aerial photograph, with the land surrounding the buildings being grassed. However, the dwelling on the eastern portion of the site has been demolished, with the area being concreted and a service station being established.
2002	The site remains the same as previous aerial photograph.
2014	The site remains the same as the previous aerial photograph.

4.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW

As part of the Site Land Titles Information / Historic Aerial Review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in **Table 4-3**.

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1930	The site is surrounded by individual residential dwellings to the north, south, east and west. The Railway Corridor is adjacent the property north, while Strathfield Station is established to the south-east. North-west of the site where the railway forks in two directions, the land in between is consists of undeveloped land and saw-tooth warehouses and factories along the rail line.
1943	Surrounding land use has remained the same as per previous aerial photograph.
1951	The surrounding land use remains predominantly the same as per previous aerial photograph, with the exceptions of more industrial development evident north-west of the site within the area in between the fork in the railway line. There also appears to be industrial / commercial buildings present north-west of the site adjacent the southern-most railway line.

Table 4-3 Summary of Aerial Photograph Review

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1986	The surrounding land use remains predominantly the same as per previous aerial photograph, with the exception of the commercial buildings and Strathfield Plaza being evident south-west of the site. North-west of the site, the area in between the fork in the rail line has been fully developed into and industrial area, with warehouse / factory structures being present. The land directly west of the site, adjacent Pilgrim Avenue appears to have been redeveloped with long two-storey apartment dwellings; with the northernmost area of this block is cleared land. North of the site, Concord Golf Course is evident.
1994	Surrounding land use remains predominantly the same as per previous aerial photograph, with the exception of a multi-storey commercial building evident directly east of the site, adjacent Raw Square. There has also been an additional long rectangular apartment building been constructed on the northernmost section of the block directly west of the site (along the railway corridor boundary). North-west of the site, adjacent Homebush Bay the construction of Sydney Olympic Park is underway.
2002	Directly south-east of the site the area surrounding Strathfield Plaza has been redeveloped with multi-storey mixed-use apartment buildings. South-west and north of the site still remains heavily occupied by individual residential dwellings. North-west of the site along the southernmost rail line, the previous industrial / commercial buildings have been redeveloped with the construction of multiple multi-storey apartment buildings. North-west of the site Sydney Olympic Park has been completed.
2014	The surrounding land use remains predominantly the same as per previous aerial photograph, with the exception of the area north of the site adjacent the railway line has been cleared and grassed.

4.3 COUNCIL INFORMATION

A request to access Strathfield Councils site history records was initiated on 16 January 2018, however Council approval was still pending at the time of writing. Should pertinent information be identified upon receipt of Council records, an addendum to the PSI will be prepared and issued.

4.4 SAFEWORK NSW DANGEROUS GOODS REGISTER RECORDS

A search of WorkCover NSW Authority records relating to the site was requested on 16 January 2018 by EI, on behalf of the Client. Correspondence (verbal) dated 1 February 2018 from the Dangerous Goods Licensing Section, confirmed that SafeWork NSW had a file for the service station at 9-11 Albert Road. However, at the time of reporting EI had not received the document. Upon receipt of the SafeWork record, an addendum to the PSI will be prepared and issued.

4.5 EPA ONLINE RECORDS

4.5.1 Contaminated Land - Record of Notices under Section 58 of CLM Act (1997)

An on-line search of the contaminated land public record of EPA Notices was conducted on 17 January 2018.

The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked;

- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by NSW EPA under section 35 or 36 of the *Environmentally Hazardous Chemicals Act 1985* (EHC Act).

The search confirmed that the site known as 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW and lands in its close proximity (within 500 m), are not subject to any regulatory notices issued by the NSW EPA.

4.5.2 List of NSW contaminated sites notified to EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 17 January 2018. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the NSW EPA.

The search confirmed that the site known as 2-6 Pilgrim Avenue & 9-14 Albert Road, Strathfield NSW and lands within close proximity (500 m radius) was not subject to any regulatory notices issued by the NSW EPA.

4.5.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 17 January 2018. The public register contains records related to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search for Strathfield identified one licence held within close proximity to the site (approx. 500 m radius) in that area. The POEO Licence was held by HCOA Operations (Australia) Pty Limited (approx. 540 m to SE) for Hazardous, Industrial or Group A Waste Generation or Storage from 2000 to 2007.

4.6 OTHER INFORMATION SOURCES

Documentation prescribed under the *Protection of the Environment (Underground Petroleum Storage Systems) Regulation 2014,* required to be held by site operators of service station sites, including information relating to the sites system for detecting and monitoring leaks, groundwater monitoring wells installations and testing program, the facilities <u>Environment Protection Plan</u> (EPP), and information pertaining to record keeping, and reporting of leaks, has not been supplied to EI.

In addition, other available environmental reports prepared for the site have also not been supplied to EI for review. The provision of such documentation would assist with understanding the environmental condition of soils and groundwater on the service station site (9-11 Albert Road).

5. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 POTENTIAL CONTAMINATION SOURCES

On the basis of the PSI findings the potential contamination source is:

- Unknown type and concentration of contaminants within imported fill soils beneath site structures and in fill areas;
- Impacts from spills and leaks from onsite vehicles, machinery, chemicals / chemicals stores, and paint use;
- Weathering of building structures (i.e. painted surfaces, metallic structures, cement-fibre sheeting, etc.);
- Hazardous materials, including potential asbestos-containing materials (ACM) from building products used onsite; and
- Possible impacts historic use of pesticides beneath site structures and in garden areas;
- Impacts from uncontrolled demolition of historic site structures;
- Potential contamination from localised storages; and
- Potential impacts to soils and groundwater from sub-surface (UST and UPSS) and above ground infrastructure onsite. Including spills during removal and refill of hazardous chemicals and leaks of hazardous chemicals around joints in chemical lines from fill point to tank and from tank to release points (9 Albert Road, Strathfield);
- Unknown type and concentration of contaminants within groundwater;
- Migration of contamination onto site from adjoining properties and unknown contamination sources.

5.2 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the PSI, the chemicals of potential concern (COPC) at the site are considered to be:

- Soil heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds *benzene, toluene, ethyl-benzene* and *xylenes* (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), volatile organic compounds (VOCs), and asbestos.
- Groundwater HM, TRH, BTEX, PAHs, and VOCs.

5.3 POTENTIAL SOURCES, RECEPTORS AND EXPOSURE PATHWAYS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised in **Table 5-1**.

Table 5-1 Conceptual Site Model

Impacted Media	Chemicals of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Soil	HM, TRH, PAH, BTEX, OCP, OPP, PCB, and asbestos	Disturbance of surficial and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment	 Ingestion; Dermal contact; Inhalation of asbestos fibres and dust particulates 	 Current commercial and residential occupants at the site Construction and maintenance workers End users of the site post redevelopment
		Atmospheric dispersion from soil to indoor and outdoor air spaces	 Inhalation of asbestos fibres and dust particulates 	_
	BTEX and TRH	Volatilisation of contamination from soil and diffusion to indoor air spaces	 Inhalation of vapours from VOC impacted soil. 	
	HM, TRH, PAH, BTEX, OCP, OPP	Plant uptake of contamination present in root zone	 Plant uptake 	 Future ecological receptors (e.g. site vegetation post redevelopment)
Groundwater	HMs, TRH, BTEXN, phenols and VOCs	Interception of water table during excavation Potential seepage into deep basement intercepting water table (both on site and off site)	 Dermal contact; Ingestion; Inhalation of vapours 	 Construction and maintenance workers Basement users post redevelopment Offsite users of constructed basements that are not water tight
		Migration of dissolved phase impacts in groundwater	 Contaminants arriving at receiving surface water bodies could lead to ingestion and dermal contact 	Aquatic ecosystemsRecreational water users
	BTEXN and VOCs	Volatilisation of contamination from groundwater to indoor or outdoor air spaces	 Inhalation of vapours 	 End users of the site
Building Fabrics	Lead, PCB and asbestos	Release of hazardous materials during uncontrolled demolition of building fabrics	 Ingestion; Dermal contact; Inhalation of airborne contaminants 	Construction and maintenance workers

5.4 DATA GAPS

Based on the CSM derived for the site and the above qualitative assessment of risks, the following data gaps have been identified, which are considered to warrant closure by limited additional investigation:

- The presence of onsite contamination from identified sources (listed in **Section 5.2**) require confirmation; and
- The degree and extent of onsite contamination.

6. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and EPA (2017) *Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	The site has been historically been residential and commercial properties, including use as service station. This assessment is required as part of a planning proposal to investigate the potential for contamination to be present at the site by the completion of a qualitative appraisal of available historical site information, and limited intrusive investigation of soils and groundwater. Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources listed in Section 5-2 . Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 5 .	-
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	 Based on the objectives outlined in Section 1.4, the following decisions are identified: Has the site been adequately characterised with sufficient and appropriate sampling coverage (vertical and lateral) to assess for the presence of potential contamination sources? Has the nature, source and extent of any onsite impacts (soil and/or vapour) been defined? What influence do site-specific, geologic conditions have on the fate and transport of any impacts that may be identified? Does the degree of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps 	-

Page | **20**

Details

DQO Steps

		investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Proposed development and land use; Aerial photographs, historical land title records, council records; Areas of concern identified during the site inspection, prior to limited intrusive investigations; National (NEPC, 2013) and State-based (NSW EPA, various) environmental guidelines; Soil samples and observations obtained from an intrusive investigations at five locations, and at depths deemed appropriate for investigation purposes (or prior auger refusal); Installation of three groundwater monitoring wells; Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and Laboratory analysis of selected soil and groundwater samples for COPCs presented in Section 5.2. At the end of the assessment, a decision must be made regarding whether the environmental conditions are suitable for the proposed redevelopment, or if additional investigation or remedial works are required 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Lateral – defined by the cadastral site boundaries. Vertical – from the existing ground level to a maximum depth of 9 mBGL, and underlying water-bearing zones. Temporal – results are valid on the day of data and sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.	Lateral – Inability to access areas of the site due the location of buildings and no access being granted for the services station, restricting drilling rig access, as detailed in Section 6.2 . Vertical – the maximum depth achieved by on-site boreholes was 5.2 m. While groundwater monitoring wells were installed, monitoring wells were dry at the time of sampling.

the data

DQO Steps	Details	Comments (changes during investigation)
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	 The decision rules for the investigation were: If the concentrations of contaminants in the soils data exceed the land use criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 6-2. 	-
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in	Based on the qualitative data gathered via site history review and site walkover observations, a non- statistical judgemental sampling design was selected for performing this PSI. As the site investigation area is predominantly residential / commercial, areas subject to modification or development have been identified as areas of environmental concern (AEC) based identified contamination sources, known contaminants of concern, and professional judgement. Where there is uncertainty regarding the quality of the data obtained via the adoption of the judgemental sampling design in this PSI, further investigation by systematic sampling will be performed, and include hypothesis testing of the data collected by statistical analysis.	-

DQO Steps	Details	Comments (changes during investigation)
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource- effective sampling and analysis design for general data that are expected to satisfy the DQOs	 Written instructions will be issued to guide field personnel in the required fieldwork activities. Soil samples will be collected from five targeted soil sampling locations, selected based accessible site areas and areas of potential environmental concern. An upper soil profile sample will be collected at each borehole location and tested for chemicals of concern, to assess the environmental condition of a fill layer (if present), and for potential impacts from historical, above-ground activities. Further sampling would also be performed in deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples), and will also be used to characterise subsurface stratigraphy. Three groundwater monitoring wells are proposed to characterise groundwater quality within the site. Representative soil samples will be analysed for the COPC detailed in Section 5.2. to allow characterisation of soils; and Review of the results will be undertaken to determine if further excavation and additional sampling is warranted. Additional investigations would be considered to be warranted where soil concentrations are found to exceed remediation criteria endorsed by the NSW EPA, relevant to the proposed land use(s). 	Due to the shallow depths of borehole refusal on or in underlying rock on the site, groundwater monitoring wells were installed dry, for the potential of encountering groundwater.

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 8**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR)
		Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage
	Laboratory – Laboratory duplicate and matrix spike	difference (RPD [%])
	duplicate	Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting
	Laboratory – Method blank	(LOR)
		Prescribed by the laboratories
Completeness	Completion (%)	-

Table 6-2 Data Quality Indicators

7. ASSESSMENT METHODOLOGY

7.1 SAMPLING RATIONALE

With reference to the CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from five borehole locations located systematically across the site using an approximate grid-based sampling pattern to characterise in-situ soils;
- Construction of three (3) groundwater monitoring wells to a maximum depth of 9 mBGL (or refusal) for groundwater characterisation;
- Sampling groundwater during a single groundwater monitoring event (GME) at three monitoring wells located up gradient and down gradient of anticipated groundwater flow to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

7.2 INVESTIGATION CONSTRAINTS

A number of constraints were encountered during the investigation works, and detailed below:

- Limited site access for the drilling rig due to the site being occupied by multiple dwellings and associated car parking, and site buildings being used for commercial business activities at 9 Albert Road, with no access being given on the day of sampling;
- Due to the shallow depths of borehole refusal on or in underlying rock on the site, the groundwater monitoring wells were installed dry. Based on previous investigations in the surrounding areas groundwater is expected to be encountered around 7 mBGL. At the time of groundwater sampling, the groundwater monitoring wells were reported to be dry; and
- Inability to access areas of the site due to heavy vegetation and steep gradients which restricted drilling rig access.

7.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 7-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	All samples are to be assessed against the NEPM 2013 HIL-B thresholds for residential with minimal opportunities for soil access.
		Ecological Investigation Levels (EILs)
		All samples are to be assessed against the NEPM 2013 EILs for arsenic,

 Table 7-1
 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale	
		copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems.	
		Soil Health-based Screening Levels (HSLs)	
		The NEPM 2013 HSL-B thresholds for residential with minimal opportunities for soil access and HSL-D thresholds for industrial/commercial sites with access to soils for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX, naphthalene and VOCs.	
		Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos". Ecological Screening Levels (ESLs)	
		All samples are to be assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial ecosystems.	
		Management Limits for Petroleum Hydrocarbons	
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 Management Limits for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.	
Groundwater	NEPM, 2013	Groundwater Investigation Levels (GILs) for Fresh Water	
	GILs for Marine Waters	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals cadmium and mercury. The marine criteria were considered relevant as the closest, potential surface water receptor was an unnamed watercourse draining to Oyster Bay, located 170 m south-west of the site and understood to be tidally influenced.	
	NEPM, 2013	Health-based Screening Levels (HSLs)	
	Groundwater HSLs for Vapour Intrusion	The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. HSL-B thresholds for residential with minimal opportunities for soil access were applied for groundwater.	
	NEPM, 2013	Drinking Water GILs	
	GILs for Drinking purposes	The NEPM (2013) GILs were adopted relating to direct contact/ingestion of groundwater with consideration to construction workers during development, adjacent basement users, and any unregistered groundwater wells. These were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).	

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

7.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 7-2**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details	
Fieldwork	The site investigation was conducted on 23 January 2018; and comprised of five test bores, with five fill samples.	
Drilling Method & Investigation Depth	Boreholes BH101M – BH105M were drilled using an auger drill with a TC-bit on a ute mounted rig. Investigation depths ranged between $0.0 - 5.2$ mBGL and sample depths ranged between $0.2 - 2.9$ mBGL.	
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix E .	
Field Observations	A summary of field observations is provided, as follows:	
(including visual and	 No odours were noted within each of the boreholes; 	
olfactory signs of potential contamination)	 No visual signs of contamination were noted in fill samples, apart from ash noted in fill taken from BH102; and 	
	No fragments of asbestos containing materials (ACMs) were visually identified.	
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. Blind field duplicates was separated from the primary samples and placed into glass jars. A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis. 	
Decontamination Procedures	Drilling Equipment - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials. Sampling Equipment - Sampling gloves were replaced between sampling locations.	
Sample Preservation	Samples were stored in a chilled (ice-blocks) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.	
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.	
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 9 .	

Table 7-2 Summary of Soil Investigation Methodology

7.5 **GROUNDWATER INVESTIGATION**

The groundwater investigation works conducted at the site are described in **Table 7-3**. Monitoring well locations are illustrated in **Figure 2**.

Activity/Item	Details	
Fieldwork	Groundwater monitoring wells were installed dry on 23 January 2018; whereas, water level gauging, well purging, field testing and groundwater sampling was unable to be conducted on 29 January 2018 due to wells still being dry.	
Well Construction	Three test bores were converted to groundwater monitoring wells as follows:	
	 One 5.0 m deep, onsite, down gradient well identified as BH101M; 	
	One 4.3 m deep, onsite, down gradient well identified as BH104M; and	
	One 4.9 m deep, onsite, up gradient well identified as BH105M.	
	Drilled by HartGeo using a track-mounted, Hanjin mechanical drilling rig, fitted with solid flight augers. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix E.	
Well construction was in general accordance with the standards described in NL 2012 and involved the following:		
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; 	
	 Base and top of each well was sealed with a uPVC cap; 	
	 Annular, graded sand filter was used to approximately 300mm above top of screen interval; 	
	Granular bentonite was applied above annular filter to seal the screened interval;	
	Cuttings backfill just below ground level; and	
	 Surface completion comprised of a -0.5 m plastic J-cap closing the well, with a gatic cover at ground level. 	
Well Development	Well development was unable to be conducted following installation of monitoring wells as wells were dry.	
Well Gauging & Groundwater Flow Direction	A single GME was unable to be conducted 29 January 2018, due to the wells remaining dry. The direction of groundwater flow in the aquifer was inferred to be in a north easterly direction towards Canada Bay and into Parramatta River.	

 Table 7-3
 Summary of Groundwater Investigation Methodology

8. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meets the objectives for the project (US EPA 2006). Data quality assessment included an evaluation of the compliance of the field sampling, field and laboratory duplicates and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements. The findings of the data quality assessment in relation to the current investigation at the site are discussed in detail in **Appendix I**.

The QC measures generated from the field sampling and laboratory analytical program are summarised in **Table 8-1**:

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
Preliminaries	Data Quality Objectives established	Yes	See DQO/DQI
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	See Appendices
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale
	All media sampled and duplicates collected	Yes	Soil vapour not required
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See methodology
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See methodology
	Appropriate Rinsate, Field and Trip Blanks taken	Yes	See methodology
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See laboratory reports
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory report
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory appendix
	Laboratory blanks	Yes	See laboratory QA/QC
	Laboratory duplicates	Yes	See laboratory QA/QC
	Matrix spike/matrix spike duplicates (MS/MSDs)	Yes	See laboratory QA/QC
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA/QC

Table 8-1 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See QA Tables Appendix I
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendix I.
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See document control

8.1 QUALITY OVERVIEW

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

9. RESULTS

9.1 SOIL INVESTIGATION RESULTS

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes may be described as a layer of fill/topsoil overlying clays and weathered shales. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix E**.

Layer	Description	Depth to top & bottom of layer (mBGL)				
Concrete	Concrete Hardstand	0.0 - 0.2				
Fill	II Silty clay: low to medium plasticity, brown to dark brown and light grey to grey, with sub-angular to angular gravels, rootlets, ash, moist and no odour.					
	Silt: fine grained, brown to dark brown, with small sub-angular to angular gravels, dry and no odour.	0.15 -1.8				
Natural	ural Clay: high plasticity, red to orange clay, with fine brown silt, moist and no odour.					
	Clay: medium to high plasticity, light grey, moist and no odour.	2.5 - 5.2				
Residual Soils	Weathered claystone and laminites; fine to medium grained, red, with sub-angular gravels and no odour,	1.8 – 2.5				
	Silty Clay: high plasticity, red to orange clay, with fine brown to light grey silt, trace rootlets, moist and no odour.	0.5 – 2.0				
Bedrock	Shale: highly weathered dark brown to grey.	2.5 – 4.9				

Table 9-1 Generalised Subsurface Profile (mBGL)

9.1.2 Field Observations

Soil samples were obtained from the test bores at depths ranging between 0.3 to 2.9 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal) and the following observations were noted:

- No odours were noted within each of the boreholes;
- No visual signs of contamination were noted in fill samples, apart from ash noted in fill taken from BH102; and
- No fragments of asbestos containing materials (ACMs) were visually identified.

9.2 **GROUNDWATER INVESTIGATION RESULTS**

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed across the site. Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2** and presented in the bore logs attached in **Appendix E**.

Well ID	Bore Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH101M	5.2	2.0 - 5.0	Clay
BH104M	4.3	1.3 – 4.3	Clay
BH105M	4.9	1.9 – 4.9	Clay and Shale

Table 9-2 Monitoring Well Construction Details

Notes:

¹ mBGL - metres below ground level. ² L - Litres

9.2.2 Field Observations and Water Test Results

Due to refusal in bedrock, groundwater was not encountered during the time of drilling. Hence, the monitoring wells were installed dry, before being checked a week later (29 January 2018). However, the wells were still dry, thus a single GME was not able to be conducted. Based on previous investigations EI is of the understanding that groundwater is generally encountered around 7 mBGL in surrounding areas.

9.3 LABORATORY ANALYTICAL RESULTS

9.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 9-3**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix F** and all laboratory analytical reports for tested soil samples are presented in **Appendix G**.

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Heavy Metal				
11	Arsenic	<1	14	None
11	Cadmium	<0.3	0.6	None
11	Chromium (Total)	6	31	None
11	Copper	4	140	Samples exceeding adopted EIL: BH101_0.3-0.4 (120 mg/kg); and BH102_0.3-0.4 (140 mg/kg)
11	Lead	22	2,800	Samples exceeding adopted HIL-B: BH102_0.3-0.4 (2,800 mg/kg) Samples exceeding EPA (2014) Waste Classification Guidelines: BH101_0.3-0.4 (530 mg/kg); BH104_0.3-0.4 (350 mg/kg); and BH102_1.0-1.1 (110mg/kg)
11	Mercury	<0.05	0.43	None
11	Nickel	0.8	9.7	None
11	Zinc	9.1	190	Samples exceeding adopted EIL: BH102_0.3-0.4 (190 mg/kg)
Hydrocarbons				
11	TRH F1	<25	<25	None
11	TRH F2	<25	<50	None
11	TRH F3	<90	<100	None
11	TRH F4	<100	<120	None
12	Benzene	<0.1	<0.2	None
12	Toluene	<0.1	<0.5	None
12	Ethyl benzene	<0.1	<1	None
12	Total xylenes	<0.3	<1	None
9	Benzo(α)pyrene	<0.1	0.7	None
9	Naphthalene	<0.1	<0.1	None
Pesticides				
5	Total OCP	<1	<1	None
5	Total OPP	<1.7	<1.7	None
PCBs				
5	Total PCBs	<1	<1	None
Asbestos				
5	Asbestos	No asbestos detected	No asbestos detected	None

Table 9-3 Summary of Soil Analytical Results

Heavy Metals

With reference to **Table T1**, the majority tested heavy metals concentrations were below the health based SILs. However, lead (Pb) exceeded human investigation levels (HILs) within the following tested sample BH102_0.3-0.4 (2,800 mg/kg).

The derived ecological investigation level (EIL) for the heavy metals were not exceeded in tested samples, with the exceptions of BH102_0.3-0.4 (2,800 mg/kg) exceeding lead criteria (1,200 mg/kg); BH101_0.3-0.4 (120 mg/kg) and BH102_0.3-0.4 (140 mg/kg) exceeding copper criteria (110 mg/kg); and BH102_0.3-0.4 (190 mg/kg) exceeding zinc criteria (145 mg/kg).

TRHs

As shown in **Table T1**, total recoverable hydrocarbons (TRH) concentrations were all below the corresponding NEPM 2013 health-based criteria.

The ecological screening level (ESL) and EIL's were not exceeded within any of the samples tested for TRH.

BTEX

BTEX compounds were below the corresponding SILs and EILs, as shown in Table T1.

PAHs

As summarised in Table T1 PAH concentrations were all below the health based SIL's.

OCPs, OPPs and PCBs

With reference to **Table T1**, no detectable concentration of any of the screened OCP, OPP, and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs.

Asbestos

As summarised in Table T1, Asbestos was not identified in any locations across the site.

10. SITE CHARACTERISATION

10.1 UNDERGROUND PETROLEUM STORAGE SYSTEM

Verbal confirmation from SafeWork NSW (dated 17 January 2018) identified the presence of UPSS's on site at the service station, located at 9-11 Albert Road. However, details of the UPSS's on site were not made available to EI at the time of reporting. Visual evidence of fill points were noted at the service station located on the south-eastern portion of the site, evident in **Appendix C, Photograph 25**.

During the investigation EI was unable to gain access to the service station; hence the contamination status of the site (9-11 Albert Road) remains unknown. In light of this limitation, and the inherent risks associated with UPSS and resulting contamination (soil and groundwater), further intrusive soil investigations, including the installation of groundwater wells will be required to evaluate potential contamination associated with this source.

As the proposed development will involve bulk excavation and construction of a multi-level basement car-park, it is envisaged that USTs and associated infrastructure will require decommissioning and removal. This process is to be conducted in accordance with the *Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008* (DECCW, 2009). It is recommended a Remedial Action Plan (RAP) be prepared, as specified in the *Technical Note: Investigation of Service Station Sites* (EPA, 2014), to establish a sequential process of remediation.

10.2 HEAVY METALS IN SOIL

Elevated concentration of Lead in excess of the adopted health-based criterion (HIL-B) was reported in the sample BH102_0.3-0.4, at 2,800 mg/kg. Testing of the deeper soil sample BH102_1.0-1.1 found the concentration of lead below the laboratory reporting limit, suggesting the lead impact was likely limited to the fill layer.

Based on the proposed development plans BH102 was located within the extent of the basement excavation. However, the lead contaminated fill will likely be removed during the process of bulk excavation. Provided there is no accessible soils in vicinity of this borehole post development, the exceedance of Lead at this location is unlikely to constitute an ongoing health risk to potential receptors post development. Appropriate soil / waste classification and management measures should be implemented during bulk excavation to ensure the contaminated material is disposed in accordance with relevant EPA requirements.

10.3 ASBESTOS RISKS IN SOIL

While no asbestos was detected in laboratory analysed soil samples and soils examined in the field investigation, the overlying surface cover and existing site buildings prevented a detailed inspection of the subsurface profile. In addition, site history and historical aerial photography information revealed former structure in the south-east section of the site was demolished prior 1986. El consider there is potential for asbestos materials to be present in site filling soils as a result of uncontrolled demolition, if Asbestos-Containing Material (ACM) was used in former structures. Therefore, the potential for buried ACM and friable asbestos to occur in the subsurface fill materials cannot be excluded.

In view of the above, further characterisation of site fill soils will be required. This should, at a minimum, comprise visual inspection of the fill strata by an appropriately qualified person, after site demolition and removal of the existing surface cover. If deemed necessary, additional sampling and laboratory testing of subsurface materials should also be undertaken.

El note that the existing site structures were constructed at various times, between 1943 to 1994, hence it is possible that ACM is present in current buildings. A Hazardous Materials Survey should be

undertaken prior to site demolition by a suitably qualified person. This should be performed to identify ACM and other potentially hazardous building products, and to enable the development and implementation of appropriate management procedures during demolition (if necessary).

10.4 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the preliminary CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. In light of the limitations of this investigation, a number of data gaps (as outlined in **Section 5.4**) remain that require closure. These include the following:

- Further intrusive investigation of the site to satisfy the sampling density requirements of EPA (1995);
- The quality of soils beneath building structure areas of the site not assessed during this DSI. Provided that the majority of the site is to be bulk excavated for the basement, the supplementary investigation may be carried out as part of the waste classification for excavated materials;
- The condition of soil and groundwater in the immediate vicinity of current and historical UPSS areas, including bowser islands, fill points, and fuel lines;
- The quality of groundwater onsite and down-hydraulic gradient of the service station site, including background groundwater quality migrating onto the site;
- Confirmation of groundwater flow direction by survey of groundwater monitoring wells by a licensed surveyor;
- Potential presence of hazardous materials present within the existing structures; and
- The suitability of retained deep soils (extent as outline on **Figure 2**) to be used for landscaping purposes on the northern perimeter of the site.

11. CONCLUSIONS

The property located at 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW was the subject of a Preliminary Site Investigation with Limited Sampling. El understand that this assessment is required to appraise the environmental condition of the site as part of a planning proposal of site for the proposed construction of four adjoining ten to fifteen-storey mixed-use development buildings with a multi-level basement car park covering entire site footprint, and to evaluate potential for on-site contamination associated with current and former land uses.

Based on the findings of this assessment, it is concluded that:

- The site is located approximately 11 km west of Sydney Central Business District (CBD), within the Local Government Area of Strathfield Council (see **Figure 1**). The land parcel is also identified as Lot 100 DP807807, SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558, covering a total area of approximately 4,885m², as depicted in the site plan presented as **Figure 2**;
- Historical records indicate the site appears to have been used for residential and commercial use since at least the early 1930s. The residential apartment dwellings appear to be evident on site from at least 1943, with the service station occupying the eastern side of the site from the mid-1990s. Site use has remained the same since 1990s to present;
- The site and surrounding properties are not reported as being subject to regulation in relation to environmental impacts, as documented in the EPA public registers;
- Verbal confirmation of SafeWork NSW records and visual evidence indicated UPSS's to be located on site at the service station (9-11 Albert Road);
- A request to access Strathfield Council's site history records was initiated on 16 January 2018, however Council approval was still pending at the time of writing. Should pertinent information be identified upon receipt of Council records, an addendum to the PSI will be prepared and issued;
- A site walkover inspection identified the sites current uses consist of residential and commercial purposes, potential asbestos containing material (ACM) was noted within some of the buildings materials, illegal dumping had previously occurred on site and strong effluent odour and water leakage was evident along the driveway at 11-13 Albert Road;
- This CSM model was reviewed and further developed by EI which was then analysed in conjunction to the information gathered from the site walkover inspection and site history review. From this analysis EI considered that the recommendation made by EI of completing an intrusive site investigation was warranted to conduct sampling using systematic sampling regime across the site;
- Soil sampling and analysis were conducted at five test bore locations. The sub-surface layers comprised fill and residual soils overlying clay and weathered shale;
- Results of soil samples collected from soil test boreholes indicated the following:
 - The reported concentration of priority metals were reported below the adopted human and ecological health criteria, with the following exceptions: Lead BH102), Copper (BH101 and BH102), and Zinc (BH102);
 - Total recoverable hydrocarbons (TRH), BTEX, and PAH concentrations were all below the corresponding NEPM 2013 health-based criteria's;
 - No pesticides (OCPs, OPPs) or PCBs were reported; and

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

- Asbestos was not identified in laboratory analysed soil samples.
- Groundwater was not encountered by EI during the investigation due to refusal in weathered shale. Three shallow groundwater monitoring wells were installed; however they were all reported dry at the time of sampling. Groundwater flow direction was not calculated during this investigation, however, groundwater is anticipated to flow north-east towards Parramatta River; and
- We note that the following data gaps, as outlined in the CSM in **Section 5.4** remain that require closure:
 - Further intrusive investigation of the site to satisfy the sampling density requirements of EPA (1995);
 - The quality of soils beneath building structure areas of the site not assessed during this DSI.
 Provided that the majority of the site is to be bulk excavated for the basement, the supplementary investigation may be carried out as part of the waste classification for excavated materials;
 - The condition of soil and groundwater in the immediate vicinity of current and historical UPSS areas, including bowser islands, fill points, and fuel lines;
 - The quality of groundwater onsite and down-hydraulic gradient of the service station site, including background groundwater quality migrating onto the site;
 - Confirmation of groundwater flow direction by survey of groundwater monitoring wells by a licensed surveyor;
 - Potential presence of hazardous materials present within the existing structures; and
 - The suitability of retained deep soils to be used for landscaping purposes on the northern perimeter of the site.

Based on the findings from this PSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), El conclude that in light of the site access restrictions and constraints, several data gaps remain that will require closure to satisfactorily characterise the fill soils. In view of the proposed development scope, and currently available information, El consider that the site can be made suitable for the proposed land use, provided recommendations detailed in **Section 12** are implemented at a future development application stage. It should be noted that this is not required at the planning proposal stage.

12. RECOMMENDATIONS

Based on the findings of this PSI, the following recommendations will be required to be implemented during site redevelopment to confirm the site as being suitable for the proposed development, at a future development application stage:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Review of available environmental reports previously prepared for the service station site;
- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Design supplementary investigations to close the data gaps identified during this investigation;
 - Outline the remediation requirements for UPSS decommissioning, and remediation and validation activities in accordance with the *POEO (UPSS) Regulation 2014* and associated guidance documents, and other contamination that may be identified during data gap closure investigations;
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the *Waste Classification Guidelines* (EPA, 2014); and
 - Provide a SAQP for the validation of remediation activities performed on-site.
- Undertake supplementary investigations, and subsequent remediation and validation works for the site, as outlined in the RAP. El note that due to current site constrains, the additional investigations and remediation works may be conducted after site demolition when access to areas of environmental concern is made available;
- Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) *Waste Classification Guidelines*;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to EI's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Ed., EPA 2017P0269/121, October 2017.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Prospect / Parramatta Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM	Asbestos-containing materials
ASS	Acid Sulfate Soils
Β(α)Ρ	Benzo(a)pyrene
BH	Borehole
BTEX	Benzene, Toluene, Ethyl benzene, Xylene
COC	Chain of Custody
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DP	Deposited Plan
EIL	Ecological Investigation Levels
EPA	Environment Protection Authority
EMP	Environmental Management Plan
ESL	Ecological Screening Levels
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH $>C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013. Schedule B1)
HIL	Health-based Investigation Level
HMS	Hazardous Materials Survey
HSL	Health-based Screening Level
km	Kilometres
m	Metres AHD Metres Australian Height Datum
mBGL	Metres Below Ground Level
ma/L	Milligrams per litre
ua/L	Micrograms per litre
MW	Monitoring well
ΝΑΤΑ	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
OPP	Organophosphorus Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
Ha	Measure of the acidity or basicity of an aqueous solution
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UPSS	Underground Petroleum Storage Systems
UST	Underground Storage Tank
VENM	Virgin Natural Excavated Material
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

FIGURES

awn:	C.M.	Prelim
proved:	N.F.	2-6 P
ate:	24-01-18	

TABLES

Table T1 Summary of Soil Analytic	ical Results																										E23668 -	Strathfiel
						Heavy	y Metals					P/	AHs			вт	ΈX			TF	RH		т	эн	Pesti	cides	PCBs	Asbestos
Sample ID	Material	Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	C°-C°	C ₁₀ -C ₃₈	Total OCPs	Total OPPs	Total	Presence (Yes/No)
EI, 2017	r		1 40		1 40	100	500	0.45			1		1		1							1		440	4			
BH101_0.3-0.4			13	0.3	18	120	530	0.15	8.1	92	0.3	0.2	1	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH102_0.3-0.4			5	0.6	9.3	140	2,800	0.43	8.9	190	1.0	0.7	7.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH103_0.4-0.5	Fill		9	<0.3	11	27	72	<0.05	9.7	46	<0.3	0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH104_0.3-0.4			8	<0.3	14	67	350	0.08	4.9	83	0.6	0.4	4.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH105_0.3-0.4		4	6	<0.3	7.6	6.3	41	<0.05	1.4	9.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH101_1.0-1.1		00/4/0040	14	<0.3	22	19	33	<0.05	<0.5	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH102_1.0-1.1	Residual Soil	23/1/2018	6	<0.3	31	14	110	<0.05	1.4	22	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH103_1.0-1.1			4	<0.3	11	12	36	<0.05	1	18	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH104_1.5-1.6		4	7	<0.3	19	17	39	<0.05	0.8	13	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
QD1	0.7		4	<0.3	6.7	9.3	30	<0.05	1.5	16	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
QII	Sol		<4	<0.4	6	4	22	<0.1	2	10	N.A.	N.A.	N.A.	N.A.	<0.2	< 0.5	<1	<1	<25	<50	<100	<100	<25	<275	N.A.	N.A.	N.A.	N.A.
QIB		4	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	<0.3	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
QR1	Water		<1	<0.1	<1	<1	<1	<0.0001	<1	71	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	Movimum Concentration						0000	0.40	Stat	stical Analys	sis ,											400						
	Maximum Concentration		14	0.6	31	140	2800	0.43	9.7	190	1	0.7	7.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	INO
				1	500		1	-		311.5	r –		-															
	HIL B - Residential		500	150	500 Cr (VI)	30,000	1,200	120	1,200	60,000	4		400														1	(
				•			Source de	pths (0 m to	<1 m. BGL)					4	0.6	390	NL	95	40	230								
HSL A &	HSL B - Low - High Density F	Residential					Source de	pths (1 m to	<2 m. BGL)					NL	0.7	TL	NL	210	65	NL								
	Soil texture classification - Silt	1 2					Source d	epths (2m to <	4 m. BGL)					NL	1	TL	NL	NL	100	NL								
							So	urce depths (4	m+)					NL	2	TL	NL	NL	190	NL								
	EIL / ESL ¹		105		198	110	1,200		35	145		0.7		170	65	105	125	45	180	120	1,300	5,600			180			
														1	L	ļ												
Management Limit	ts – Residential, parkland and Coarse grained soil texture ¹	l public open space																	700	1,000	3,500	10,000						
Asbestos	s contamination HSL – A&B A Bonded ACM (%w/w)	Residential																										0.01
Asbestos contaminat	tion HSL for Non Bonded / Fria	able Asbestos (%w/w)																										

Notes:	All results are recorded in mg/kg (unless otherwise stated)
	Highlighted indicates concentrations exceeds EIL / ESL criteria
	Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HIL B / HSL D) and/or NSW EPA Waste Classification Criteria.
	Highlighted indicates NEPM 2013 criteria exceeded or NSW EPA (2014) waste criteria met
HSL D	NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels based on vapour intrusion values applicable for commercial / industrial settings
NA	Not Analysed' i.e. The sample was not analysed
NC	Not Calculated'
ND	Not Detected' i.e. all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection
NL	Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more individual chemical
NR	No current published Criterion
1	Coarse grained soil values were applied, being the most conservative of the material types.
2	Silt grained soil values were applied.
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction
F2	To obtain F2 subtract Napthalene from the >C10-C16 fraction
F3	(>C16-C34)
F4	(>C34-C40)

Table-T2 - RPD	QAQC										E23668.I	E01						
ц	ate	5	TRH					BTEX					Heavy Metals					
Sample identificatio	Sampling Da	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Total Xylenes	sv	Cd	ŭ	cu	qd	БН	ž	ΨŹ
	Intra-laboratory Duplicate - Soil Investigation																	
BH105_0.3-0.4	21/11/2017	Soil	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	6	<0.3	7.6	6.3	41	<0.05	1.4	9.1
QD1	21/11/2017	Duplicate of BH105_0.3-0.4	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	6.7	9.3	30	<0.05	1.5	16
	RPD		NA	NA	NA	NA	NA	NA	NA	NA	40.00	NA	12.59	NA	30.99	NA	NA	NA
						Inter	r-laboratory [Duplicate - So	il Investigatio	n								
BH105_0.3-0.4	21/11/2017	Soil	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	6	<0.3	7.6	6.3	41	<0.05	1.4	9.1
QT1	21/11/2017	Duplicate of BH105_0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<4	<0.4	6	4	22	<0.1	2	10
	RPD		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.19	44.66	60.30	NA	NA	NA

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

NA Different PQLs

* Calculated according to NEPM 2013

66.67 RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)

66.67 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX A Proposed Development Plans

2 - 6 PILGRIM AVENUE, 11-13 ALBERT ROAD & 9 ALBERT ROAD STRATHFIELD PLANNING PROPOSAL

planning proposal

This document has been prepared by Kennedy Associates Architects and JBA Planning in support of the Planning Proposal for the urban block bounded by Pilgrim Avenue, Albert Road, Raw Square and the railway corridor at Strathfield, Sydney.

The block consists of two 'sites' being:

Site 1 – the amalgamation of 2-6 Pilgrim Avenue and 11-13 Albert Road Strathfield, currently occupied by single dwellings and residential flat buildings Site 2 - 9 Albert Road, Strathfield, currently occupied by a service station

Site 1 is currently occupied by single dwellings and residential flat buildings, whilst Site 2 is currently occupied by a service station.

Site 1 has an area of approximately 2868m2 whilst Site 2 has a total area of 2017m2. The total urban block has an area of approximately 4885m2.

Whilst this planning proposal is primarily focused on the future redevelopment of Site 1 it has been prepared in a manner that shows the long term development potential of the entire site.

The site is located immediately adjacent to Strathfield Town Centre and Strathfield Station. It is separated from the 'Strathfield Triangle' precinct by the railway corridor.

This places the site in the heart of the zone of redevelopment currently taking place across Strathfield and Canada Bay Council areas, focused on the significant strategic and urban planning opportunities offered by Strathfield Station and Strathfield Town Centre.

The need for higher density development to address Sydney's significant housing requirements is now well documented and, as this document identifies, there is a major shift in the approach to urban development around major transport corridors and urban hubs currently taking place across the entire city.

Densities, building heights, building form and building typologies are all being re-evaluated and key business and transport centres, such as Parramatta, St Leonards, Burwood and Rockdale are undergoing significant changes to address not only the new demographic and infrastructure pressures but also the change in thinking about what is the appropriate urban character and scale for the future of Greater Metropolitan Sydney.

data

site data:		proposed deve	lopment:						
Site 1:	Lots 2, 4 & 6 Pilgrim Avenue and 11 & 13 Albert Road, Strathfield	Massing	perimeter block massing consisting of a series of interconnected buildings facing Pilgrim Avenue Albert Road & Raw Squar Strathfield						
Site 2:	9 Albert Road, Strathfield	Use:	Ground Floor Commercial						
Site areas:	[Site 1] 2868m2 [Site 2] 2017m2		Upper Floors Residential						
	Total Area = 4885m2	Height	[Site 1] 11 - 13 Storeys [Site 2] 11 - 16 Storeys						
Site Frontages:	90m to Pilgrim Avenue								
	32m to Albert Road	Yield: approx	[Site 1] 155 - 175 apartments [Site 2] 100 - 120 apartments						
		GFA approx	[Site 1] 14,340 m2						
		FSR approx	[Site 1] 5:1 [Site 2] 5:1						
data		Parking approx	[Site 1] 351 spaces [Site 2] 228 spaces						

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

drawing schedule

01 data

Building heights of 70m - 80 m & 20-25 storeys are becoming the new

'average' in urban town centres (with 40 storeys and even 60 storeys being

adopted), as centres address their future needs and compete for both public

In this context the subject site, occupying a substantial amalgamated parcel of

land located approximately 200m from one of Australia's major rail stations

and 400m from the start of a major national motorway, with only one

neighbour sharing a common boundary and adjoining an already existing

context of up to 20 storeys in height, is ideally placed to adopt this new urban

approach. The free standing nature of the subject site allows it to be seen,

The subject site is, in fact, critically located in that it adjoins and forms part of

the gateway to the principal points of entry to Strathfield Town Centre from

That is, it offers a strategically important opportunity in terms of the future

This document, identifies the regional and contextual opportunities for the site

and proposes a development that delivers a group of buildings varying in

This places the proposed development firmly within the already anticipated

context of the area and the lower end of the currently accepted range for high

This Planning Proposal shows how the subject site can be successfully

developed to achieve a mixed use development that will deliver a high

standard of amenity to its occupants and strengthen the urban character of

and private investment.

both the west and north.

character of Strathfield.

Strathfield Town Centre.

with its 'other half', as a 'stand alone' entity.

height between 11 and 16 storeys (37m - 54m).

density developments being proposed across Sydney.

- 02 summary
- 03 title page context
- 04 greater sydney
- 05 aerial photo
- 06 locality A
- 07 locality B
- 08 context photos
- **09** chain of development
- 10 Locality C
- 10 Locality C
- 11 existing height controls
- 12 subject site
- 13 site photos
- 14 site plan A
- 15 site plan B
- 16 site analysis A town centre
- 17 renewal precincts
- 18 strathfield town centre
- 19 council areas
- 20 council areas
- 21 strathfield urban form
- 22 town centre comparisons
- 23 burwood & strathfield town centres
- 24 proposed town centre
- 25 raw square
- 26 site analysis B height / mass
- 27 metropolitan building height precedents
- 28 chain of development
- 29 council areas
- 30 wider strathfield
- 31 town centre height comparisons
- 32 current controls
- 33 strathfield town centre
- 34 proposed town centre heights A
- 35 proposed town centre heights B
- 36 proposed town centre heights C
- 37 burwood & strathfield town centres height compariso
- **38** railway corridor urban renewal strategy
- **39** title page massing studies

	40	massing study A
	41	DELETED
	42	massing study B
	43	title page - proposal
	44	proposed development
	45	proposed development
	46	indicative development - plan
	47	indicative development - pilgrim road elevation
	48	indicative development - 3d views
	49	proposed development
	50	proposed development
	51	sectional perspective
	52	title page - proposal - view analysis
	53	view to site 01
	54	view to site 02
	55	view to site 03
	56	view to site 04
	57	view to site 05
	58	view to site 06
	59	view to site 07
	60	view to site 08
	61	title page - proposal - plans, shadow analysis & solar anaysis
	62	indicative development - typical basement [site 1]
	63	indicative development - level 00 - ground [site 1]
	64	indicative development - level 01-08 [site 1]
	65	indicative development - level 09 [site 1]
	66	indicative development - level 10 [site 1]
	67	indicative development - level 11-12 [site 1]
	68	indicative development - level 13-16 [site 1]
	69	indicative development - GFA summary
	70	indicative development - ADG complience [site 1]
	71	shadow analysis A
	72	shadow analysis B
	73	shadow analysis C
	74	shadow analysis D
	75	shadow analysis E
	76	shadow analysis F
on	77	shadow analysis G
	78	shadow analysis H

21/4/17 Updated Planning Proposal

1361 - PP01A

indicative development - plan

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect-steve kennedy-registration no. 5828

	site 1: subjec FSR = 5:1	ct site	2868 sqm GFA = 14340 sqm								
	building	height in storeys	GFA	UNITS							
	podium	1	888 sqm	commercial							
	A 555 sqm 7 units	12	12452 sam	85							
	B 770 sqm 9 units	10	13432 Sqiii	83							
	subject site t	otal	14340 sqm	167							
	proposed res	idential FSR	13452 / 2868 =	= 4.70 : 1							
/	proposed co	mmercial FSR	888 / 2868 =	0.30 : 1							
	total propose	total proposed FSR 14340 / 2868 = 5.00 : 1									
	unit mix 51 x 1B (30%) 99 x 2B (59%) 18 x 2B+S (11%)										
	site 2: adjoin FSR = 5:1	ing site	2017 sqm GFA = 10085 sqm								
	building	height in storeys	GFA	UNITS							
	podium	1	471 sqm	commercial							
	C 430 sqm 5 units	15		75							
	D 340 sqm 4 units	10	9614sqm	38							
	subject site t	otal	10085 sqm	113							
	proposed res	idential FSR	9570/2017 =	4.75 : 1							
	proposed co	mmercial FSR	471/2017 =	0.23:1							
	total propose	ed FSR	10085 / 2017 :	= 5.00:1							
	unit mix		113 x 2B								
	Unit mix sum	imary									
	Site 01_subje	ect site	168 (60%)								
	Site 02		113 (40)%)							
	Total		280								

21/4/17 Updated Planning Proposal

- PP 46 A

1361

25m 1:500 @ A3 А

indicative development - pilgrim road elevation

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

indicative development - 3d views

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

for ilustrative purpose onlyA21/4/17Updated Planning Proposal

1361 - PP 48 A

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect-steve ke ation no. 5828 21/4/17 Updated Planning Proposal

1361 - PP62A

Δ

indicative development - level OO - ground [site 1]

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect-steve kennedy-registration no. 5828

indicative development - level 01-08 [site 1]

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

indicative development - level 09 [site 1]

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

indicative development - level 10 [site 1]

proposed mixed use development @

2-6 Pilgrim Ave &11-13 Albert Rd, Strathfield

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect-steve kennedy-registration no. 5828

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX B NR Atlas Groundwater Bore Search

Home	About us	Water Management	Water Licensing	Urban Water	Real-time data	
Home - help - login - con All Groundwater find a site ⊡ All Groundwater Ma bandwidth ● high ○ lo glossary and metadata	About us tact • customise w	Vater Management	Water Licensing	Urban Water Wester Dallon Ave Iney Markets Dallon Ave Iney Markets Dallon Ave Bedgery Ave Bedgery Ave Bedgery Ave Barker Rd Star Barker Rd Star Barker Rd Star Barker Rd	Real-time data	I or th a th field Napier St Deen St Carrington St Patters Strathfield Cord Rd Strathfield Carrington Ave Strathfield Carrington Rd Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Cord Strathfield Strathfield Cord Strathfield Strat
		brial AVE	Melville Ave Boden Ave Myee Ave	Bareena St Wyrna Rd South St South St Ave Vallice Ave Wallice Ave	Albyn Rd Albyn Victoria St P Strathfield	Torrington Rd Jers Rd gnes St gnes St y y y y y y y y y y y y y y y y y y y

bookmark this page

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX C Site Photographs

Photograph 1: Northern street view of Pilgrim Avenue towards the railway corridor.

Photograph 2: Southern view of site along Pilgrim Avenue, towards Albert Road.

Photograph 3: BH101M located along the railway corridor, north-west corner of site.

Photograph 4: Western view of dwelling located at 2 Pilgrim Avenue.

Photograph 5: Front view of property located at 2 Pilgrim Avenue (north-west corner of the site).

Photograph 6: Front view of properties located at 4 & 6 Pilgrim Avenue (Western side of site).

Photograph 7: Backyard of property located at 4 Pilgrim Avenue, adjoining the Shell Service Station.

Photograph 8: View of properties fronting Pilgrim Avenue (western site boundary).

Photograph 9: Driveway of 2 Pilgrim Avenue and view of railway corridor.

Photograph 10: Eastern view of backyard located at 11-13 Albert Road, used for units associated car parking.

Photograph 11: Overgrown vegetation evident along the western boundary of 11-13 Albert Road.

Photograph 12: Northern exterior of the unit block located at 13 Albert Road.

Photograph 13: General litter evident in the backyard11-13 Albert Road.

Photograph 14: Northern and western views of unit blocks located at 11-13 Albert Road.

Photograph 15: North-eastern corner of 11 Albert Road, adjoining Shell Service Station.

Photograph 16: Brick fragments located near BH104M.

Photograph 17: Driveway in between 11-13 Albert Road, with potential burst sewer drain.

Photograph 18: BH105M locality near southern site boundary of Albert Road.

Photograph 19: Potential asbestos containing material (ACM) present in buildings awnings across the site.

Photograph 20: Buildings exterior from the south-western corner of the site at 13 Albert Road.

Photograph 21: Western exterior of unit block at 13 Albert Road.

Photograph 22: Frontal exterior of unit block located at 11 Albert Road and street view of Railway Square and Albert Road intersection.

Photograph 23: Litter present in front of unit blocks at 13 Albert Road.

Photograph 24: Shell Service Station located at 9 Albert Road.

Photograph 25: Fill points indicating the approximate locality of underground storage tanks (USTs).

Photograph 26: Western view of Albert Road.

Photograph 27: Eastern exterior of unit block at 11 Albert Road.

APPENDIX D Historical Property Titles Search

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

<u>NSW LRS</u> (Formerly LPI) Sydney

Address: 9 - 13 Albert Road & 2 - 6 Pilgrim Avenue, Strathfield

Description: Lot 100 D.P. 807807, Lots A & B D.P. 100558,

Lots 8 & 9 D.P. 15917 & S.P. 8785

As regards Lot A D.P. 100558

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1934)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225
07.03.1934 (1834 to 1934)	Arthur Clarke (Gentleman)	Vol 4333 Fol 225 Now Vol 4621 Fol 89
24.08.1934 (1934 to 1956)	Arthur Clarke (Gentleman) Millicent Mary Clarke (Married Woman)	Vol 4621 Fol 89
04.07.1956 (1956 to 1964)	John James Timbs (Naval Lieutenant) Mary Norwood Timbs (Widow)	Vol 4621 Fol 89 Now Vol 7174 Fol's 120 & 121
04.05.1964 (1964 to 2003)	John James Timbs (Naval Lieutenant)	Vol 7174 Fol's 120 & 121 Now A/100558
19.08.2003 (2003 to 2009)	Johant (Nominees) Pty. Limited	A/100558
27.02.2009 (2009 to 2014)	Gabriel Hung Won Kang Christina Kyoung Hee Ham Kang	A/100558
03.09.2014 (2014 to Date)	# Convertia Pty Ltd	A/100558

1

Denotes Current Registered Proprietor

Easements: -

- 04.07.1956 (G328684) Right of Carriage Way
- 04.07.1956 (G328684) Cross Easements

Leases: - NIL

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot B D.P. 100558

Date of Acquisition	Begistered Bronnistor(a) & Occupations where evailable	Reference to Title at
and term held	Registered Proprietor(s) & Occupations where available	Acquisition and sale
30.12.1909 (1909 to 1934)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225
07.03.1934 (1934 to 1934)	Arthur Clarke (Gentleman)	Vol 4333 Fol 225 Now Vol 4621 Fol 89
24.08.1934 (1934 to 1955)	Arthur Clarke (Gentleman) Millicent Mary Clarke (Married Woman)	Vol 4621 Fol 89
13.10.1955 (1955 to 1969)	Edna Stanley Barrett (Married Woman)	Vol 4621 Fol 89 Now Vol 7176 Fol 88
15.10.1969 (1969 to 2002)	Angelo Prestipino (Fruiterer) Maria Prestipino (Married Woman)	Vol 7176 Fol 88 Now B/100558
17.05.2002 (2002 to 2004)	Angelo Prestipino	B/100558
28.05.2004 (2004 to 2009)	Johant (Nominees) Pty. Limited	B/100558
27.02.2009 (2009 to 2014)	Gabriel Hung Won Kang Christina Kyoung Hee Ham Kang	B/100558
03.09.2014 (2014 to Date)	# Convertia Pty Ltd	B/100558

Denotes Current Registered Proprietor

Easements: -

- 04.07.1956 (G328684) Right of Carriage Way
- 04.07.1956 (G328684) Cross Easements

Leases: - NIL

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 100 D.P. 807807

As regards the part tinted green on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1929)	Chief Commissioner for Railways and Tramways Now Railway Commissioner for New South Wales	Vol 2026 Fol 54 Now Vol 4333 Fol 225
18.11.1929 (1929 to 1933)	Hermann Hugo Korner (Watchmaker)	Vol 4333 Fol 225 Now Vol 4361 Fol 163
18.04.1933 (1933 to 1958)	Martha Louisa Korner (Widow) (Application by Transmission not investigated)	Vol 4361 Fol 163
22.04.1958 (1958 to 1963)	John E. Murray Pty. Limited	Vol 4361 Fol 163
31.07.1963 (1963 to 1963)	John Ekins Wailes (Solicitor)	Vol 4361 Fol 163
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	Vol 4361 Fol 163 Now 100/807807

As regards the part tinted blue on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1929)	Chief Commissioner for Railways and Tramways Now Railway Commissioner for New South Wales	Vol 2026 Fol 54
30.04.1929 (1929 to 1931)	Selwyn George Trevellyn Neale (Estate Agent) Henry George Smith (Estate Agent) Frank Arnold Weiss (Estate Agent)	Vol 2026 Fol 54 Now Vol 4279 Fol 64
16.06.1931 (1931 to 1933)	Hermann Hugo Korner (Watchmaker)	Vol 4279 Fol 64
18.04.1933 (1933 to 1958)	Martha Louisa Korner (Widow) (Application by Transmission not investigated)	Vol 4279 Fol 64
31.03.1958 (1958 to 1963)	Russell Alexander Murray (Garage Proprietor)	Vol 4279 Fol 64
31.07.1963 (1963 to 1963)	John Ekins Wailes (Solicitor)	Vol 4279 Fol 64
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	Vol 4279 Fol 64 Now 100/807807

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards the parts tinted pink on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1942)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225
17.02.1942 (1942 to 1955)	John Wilfred Cooper (Builder)	Vol 4333 Fol 225 Now Vol 5330 Fol 164
10.02.1955 (1955 to 1963)	Russell Alexander Murray (Garage Proprietor)	Vol 5330 Fol 164
31.07.1963 (1963 to 1963)	John Ekins Wailes (Solicitor)	Vol 5330 Fol 164
01.08.1963 (1963 to 2016)	The Shell Company of Australia Limited	Vol 5330 Fol 164 Now 100/807807

Continued as regards the whole of Lot 100 D.P. 807807

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
23.11.2016 (2016 to Date)	# Ver Custodian Pty Limited	100/807807

Denotes Current Registered Proprietor

Easements: - NIL

Leases: -

•

- 04.04.1930 (B966024) Herbert Hayes (Garage Proprietor) expired 12.06.1958 (part tinted green on attached Cadastre)
 - 11.07.1958 (H84860) The Shell Company of Australia Limited merged into the fee simple 25.11.1963 (part tinted green on attached Cadastre)
- 04.07.2005 (AB570908) Eureka Operations Pty Limited expires 28.04.2024
 - 23.11.2016 (AK932586) Concurrent Lease Viva Energy Australia Pty Ltd expires 07.08.2032 option to purchase – also option of renewal 7 X 10 years

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 8 D.P. 15917

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1935)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225
24.05.1935 (1935 to 1936)	Ellen Amelia Spearman (Married Woman)	Vol 4333 Fol 225 Now Vol 4708 Fol 79
09.11.1936 (1936 to 1937)	Claude Hilton Bellamy (Builder)	Vol 4708 Fol 79
18.11.1937 (1937 to 1941)	John Ross Houston (Accountant)	Vol 4708 Fol 79
19.11.1941 (1941 to 1952)	Edna Alice Houston (Widow) Now Edna Alice Englert (Married Woman) (Application by Transmission not investigated)	Vol 4708 Fol 79
17.06.1952 (1952 to 1954)	John Thomas Williams (Patrolman)	Vol 4708 Fol 79
01.09.1954 (1954 to 1983)	Mary Adela McCrow (Spinster)	Vol 4708 Fol 79
18.04.1983 (1984 to 1986)	Edward Jones Elizabeth Anna Jones	Vol 4708 Fol 79
03.06.1986 (1986 to 1986)	Elizabeth Anna Jones	Vol 4708 Fol 79
18.08.1986 (1986 to 2014)	Harman Wong Linda Wong	Vol 4708 Fol 79 Now 8/15917
12.04.2014 (2014 to Date)	# Convertia Pty Ltd	8/15917

<u># Denotes Current Registered Proprietor</u>

Easements & Leases: - NIL

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 9 D.P. 15917

Date of Acquisition	Registered Proprietor(s) & Occupations where available	Reference to Title at
and term held		Acquisition and sale
30.12.1909 (1909 to 1938)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225
25.01.1938 (1938 to 1941)	George Leonard Marlow (Salesman) Percy Charles Marlow (Storekeeper)	Vol 4333 Fol 225 Now Vol 4932 Fol's 3 & 4
20.08.1941 (1941 to 1957)	James Thomas Reeves (Retired)	Vol 4932 Fol's 3 & 4 Now Vol 5268 Fol 12
30.01.1957 (1957 to 1962)	Victor Oswald Thomas Reeves (Company Manager) (Section 94 Application not investigated)	Vol 5268 Fol 12
19.06.1962 (1962 to 1975)	Arhip Mihailovich Polstchikoff (Supervisor) Antonia Polstchikoff (Married Woman)	Vol 5268 Fol 12
26.09.1975 (1975 to 1980)	Kevin Douglas Bruce (Business Proprietor) Cherie Bruce (Married Woman)	Vol 5268 Fol 12
14.10.1980 (1980 to 1986)	Kazimir Savitsky (Retired) Olga Savitsky (Married Woman)	Vol 5268 Fol 12
09.12.1986 (1986 to 1999)	Olga Savitsky (Widow)	Vol 5268 Fol 12 Now 9/15917
03.11.1999	Sunil Lal Chhabra	9/15917
(1999 to 2008)	Shikha Lal Chhabra	
08.02.2008 (2008 to 2013)	Alpha House Pty Ltd	9/15917
07.05.2013 (2013 to Date)	# Beta House Pty Ltd	9/15917

<u># Denotes Current Registered Proprietor</u>

Easements & Leases: - NIL

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards S.P. 8785

As regards the part tinted purple on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
04.11.1921 (1921 to 1921)	James Alston Gregg (Grazier)	Vol 3246 Fol 211
29.11.1921 (1921 to 1947)	Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 3246 Fol 211 Now Vol 4333 Fol 225

As regards the part tinted turquoise on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1909 (1909 to 1947)	Chief Commissioner for Railways and Tramways Then Railway Commissioner for New South Wales Now The Commissioner for Railways	Vol 2026 Fol 54 Now Vol 4333 Fol 225

As regards the part tinted

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
18.06.1947 (1947 to 1950)	Claude Sydney Charles Mills (Taxi Cab Proprietor) Nora Mills (Married Woman)	Vol 4333 Fol 225 Now Vol 5888 Fol 40
14.11.1950 (1950 to 1972)	John Bandi (Storekeeper) Imra Fenyves (Storekeeper) Now Imre Harold Pine (Storekeeper)	Vol 5888 Fol 40 Now Vol 6427 Fol's 144 & 145
04.12.1972 (1972 to 1974)	John Bandi (Storekeeper) Ilona Bandi (Married Woman)	Vol 6427 Fol's 144 & 145 Now Vol 12347 Fol 137
15.10.1974	Registration of Strata Plan No. 8785	
15.10.1974 (1974 to Date)	# The Proprietors – Strata Plan No. 8785 Wow # The Owners – Strata Plan No. 8785	Vol 12589 Fol 94 Now CP/SP8785

Denotes Current Registered Proprietor

Easements & Leases: - NIL

Yours Sincerely James McDonnell 22 January 2018

Staff: Unknown /Doc: DP15917 (Deposited Plan-LTO Charting Maps) /Rev: 17 Sep 2007 /Prt: 22 Jan 2018 8:38 /Seq: 1 of 1 /Sre: Pixel Warning: Supplied for historical reference purposes only.

Req:R988356 /Doc:SP 0008785 P /Rev:12-Oct-2007 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 13:25 /Seq:1 of 4 Ref:strathfield /Src:M

Surveyor's Reference: 50106

Req:R988356 /Doc:SP 0008785 P /Rev:12-Oct-2007 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 13:25 /Seq:2 of 4 Ref:strathfield /Src:M

SHEET No. 2 OF 3 SHEETS

.

Req:R988356 /Doc:SP 0008785 P /Rev:12-Oct-2007 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 13:25 /Seq:3 of 4 Ref:strathfield /Src:M

SHEET No. 3 OF 3 SHEETS

ā,

Г	
	STRATA PLAN No. 8785
	FIRST FLOOR
	122
	8-B-1
	·
	PT. LOT 2
	(120m²)
	141m²
	Covered Verandah
	ALL AREAS ARE APPROXIMATE
	AND INCLUDE COVERED VERANDAH.
	PL. Ca
it.	On Surveyor. Council Clerk
(

.

Req:R988356 /Doc:SP 0008785 P /Rev:12-Oct-2007 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 13:25 /Seq:4 of 4 Ref:strathfield /Src:M

SHEET Nº L RG 2/94 Annexure to Sheet | of 3 Sheets. Address of Buliding: 2 PILGRIM ST. STRATHFIELD STRATA PLAN Nº 8785 Surveyor. 6 SURVEYOR'S CERTIFICATE. John Boulton WHITE of <u>8 CROSS ST.</u> HURSTVILLE a surveyor registered under the Surveyors Act, 1929, hereby certify that -(1) any wall, the inner surface or any part of which corresponds substantially with any line shown on the accompanying floor plan as a boundary of a proposed lot, exists; (2) any floor or ceiling, the upper or under surface of any part of which forms a boundary of a proposed lot, shown in the accompanying floor plan, exists; (3) any wall, floor, ceiling or structural cubic space, by reference to which any boundary of a proposed lot shown in the accompanying floor plan is defined, exists; (4) any building containing proposed lots erected on the land shown on the accompanying location plan and each proposed lot show on the accompanying floor plan are wholly within the perimeter of the parcel * subject to sub-paragrapho (s) and (b) -(b) - (b) (c) - except to the switch that the building encroaches on a public place;
(c) - except to the switch that the building encroache on a public place, in respect of which eaves and switching in appropriate occent has been orested by registered. formation-recorded in the accompanying location pion is securate. Signature ... Othe Bluin * Delete if inapplicable. # State whether dealing or plan, and quote registered number. COUNCIL'S CERTIFICATE. in a number oundition that lat(a) telese subject to the rectrictly Date 8-8-1974 Kaman Council Clerk Subdivision No. 1143 * Complete, or delete if inapplicable. Signatures, seals and statements of intention to create easements or restrictions as to user. Olorra Bauch Mauding As Mortgage under Mortgage No. N269462 BANK OF NEW SOUTH WALES consents to the within Strata Plan. Strate Plan. Dated at Sydney this THIRD day of SEPTEMBER 1974. SIGNED for and on behalf of Bank of New South Wales by LYNDON EBSWORTH NALDER who is personally known to me. Acting Assistant Chief Security Officer who is personally known to me. Mortgage.

Req:R984486 /Doc:CT 09729-094 CT /Rev:22-Dec-2010 /Sts:OK.SC /Pgs:ALL /Prt:22-Jan-2018 08:46 Ref:strathfield /Src:M 29729094 C. TIFICATE OF TITLE NEW SOUTH WALES OPERTY ACT, 1900, as amended. Application No. 4836 Prior Titles Vol.7174 Fols.12 2994 Vol PR 120,121 1st Edition issued. 17-6-196 -J617269 5 Ful. I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 5 1 972.9 Witness alar Registrar-General. WARNING: THIS DOCUMENT MUST NOT BE PLAN SHOWING LOCATION OF LAND SEE ADTO FOLIO Val 7 (Page 0. CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON p 15917 34 FC 310 Igrim Avenue 2334-per 151 ft **REMOVED FROM THE LAND TITLES OFFICE** ā 8 Α (6F+ (640 O.Fr. Il Vain. Rd Albert Scale: 40 feet to one inch J617269 10 - Aller ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot A in Deposited Plan 100558 in the Municipality of Strathfield, Perish of granted to Thomas Rowley on 9-8-1803. Concord and County of Cumberland being part of Portion 246 Lan Registrar General. FIRST SCHEDULE (Continued overleaf) JOHN JAMES TIMES of Strathfield, Naval Officer. akan Registrar General. SECOND SCHEDULE (Continued overleaf) GR. Reservations and conditions, if any, contained in the Crown Grant above referred to Right of carriageway created by Transfer No.G328684 affecting 1. RC 2. the part of the land above described designated (X) in the plan PERSONS ARE hereon. Right of carriageway created by Transfer No. G328684 appurtement RCZ 3. to the land above described affecting the piece of land designated (Y) in the plan hereon. Cross easements created by Transfer No.G328684% (Section 181B Conveyancing Act, 1919) affecting the party wall on the common boundary of Lots A and B shown in the plan hereon. EC 4. latao Registrar General. NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED.

(Page 2 of 2 pages)	-	M M	Vol.	9729 Fol	94
		NATURE INSTRUMENT Nortgage B833324 ^P Mortgage. V8			
	(1) A second state and the second state is a second state and the sec	SEC 			FIF REGISTERED PROPRIETOR
		OND SCHEDULE (continued) ENTERED 1985.			IST SCHEDULE (continued)
		Signature of CA			INSTRUMENT
		NCELLATION			ENTERED Signature of Registrar General

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

-----16/1/2018 8:28PM

FOLIO: A/100558

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 9729 FOL 94

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
16/8/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
18/6/1990	Z65517	DISCHARGE OF MORTGAGE	
18/6/1990	Z65518	MORTGAGE	EDITION 1
19/7/1995	0391651	DISCHARGE OF MORTGAGE	EDITION 2
19/8/2003	9887763	TRANSFER	
19/8/2003	9887764	MORTGAGE	EDITION 3
27/2/2009	AE527097	DISCHARGE OF MORTGAGE	
27/2/2009	AE527098	TRANSFER	
27/2/2009	AE527099	MORTGAGE	EDITION 4
20/9/2013	AI36621	CAVEAT	
3/9/2014	AI865083	WITHDRAWAL OF CAVEAT	
3/9/2014	AI837430	DISCHARGE OF MORTGAGE	
3/9/2014	AI837432	TRANSFER	EDITION 5
8/7/2015	AJ581884	MORTGAGE	EDITION 6

*** END OF SEARCH ***

strathfield

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.
	<u>ت</u>		
	Form: 01T Release: 2 ^r		
	www.lpi.nsw.go	ov.au New South Wales OR877	'63R
		PRIVACY NOTE: this information is legally required and will become part of the public	record
	STAMP DUTY	Office of State Revenue use only NEW SOUTH WALE	5 DUTY
		24-06-2003 SECTION 18(2)	0001461633-00
		DUTY	李 本本专术宗宗宗宗宗宗宗宗
(A)	TORRENS TITLE	FOLIO IDENTIFIER A/100558	
(B)	LODGED BY	Delivery Name, Address or DX and Telephone	CODES
		IKING ST CONDRD WEST	ΠT
		029767 1241	TW
(0)	TRANSFEROR	443B Reference: NPF-LC - MT	(Sheriff)
(C)	TRANSFERUR	JOHN-JAMES TIMES	
(D)	CONSIDERATION	The transferor acknowledges receipt of the consideration of \$ 2,080,000.00	and as regard
(E) (E)	ESTATE	the land specified above transfers to the transferee an estate in fee simple	
(r)	TRANSFERRED	WHOLE	
(G)		\mathbf{E}_{1}	
(~)	TOANCEEDEE	Encumorances (if applicable):	â
(H)	TRANSFEREE		a
(H)	TRANSFEREE	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335	8
(H)	TRANSFEREE	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335	8
(H) (I)	TRANSFEREE	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335	3
(H) (H) (J)	TRANSFEREE DATE 25	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003.	â
(H) (H) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am Certified correct for the purposes of th Property Act 1900 by the transferor.	e Real
(H) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. Certified correct for the purposes of the Property Act 1900 by the transferor.	e Real
(H) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor:	ue Real
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the property Act 1900 by the transferor. Mess: Signature of transferor:	ue Real
(H) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with Name of witness:	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whorn acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the Property Act 1900 by the transferor. Si Signature of transferor:	e Real
(I) (J)	TRANSFEREEDATE2.5I certify that the plan personally a otherwise satisfieSignature of withName of witness:Address of witness	Interpretation Interpretation Interpretation Interpreta	uc Real
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with Name of witness: Address of witne	Interpretation Johant (NOMINEES) PTY. LIMITED ACN 102 321 335 Interpretation July 2003. Derson(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: Mathematical Signature of transferor: Mathematical Signature of transferor:	ue Real
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witness	Encumbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. mess: Certified correct for the purposes of the Property Act 1900 by the transferor: Signature of transferor: Signature of transferor: Huchtes Huchtes A.C.T. 2605 Certified for the purposes of the Real F	roperty Act
(I) (I) (J)	TRANSFEREE DATE 2.5 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witne	Enclimbrances (IT applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2603. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. mess: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: MMM Hughtes A.c.T. 2605 Certified for the purposes of the Real E 1900 by the person whose signature ap	e Real
(I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witne	Inclumbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: Signature of transferor: MMM $Mucqutes$ Certified for the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Fig00 by the person whose signature approximation of the purposes of the Real Figure	e Real
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witnes	Enclimbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity 1 am ed, signed this instrument in my presence. mess: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: MMM Signature of the purposes of the Real F 10: MAHON THACS Huchtes Huchtes H.c.T. 2605 Certified for the purposes of the Real F 1900 by the person whose signature ap Signature:	e Real
(I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with Name of witness: Address of witne	Enclimbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whorn acquainted or as to whose identity I am ed, signed this instrument in my presence. mess: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: Hughtes A.c.T. 2605 Certified for the purposes of the Real F 1900 by the person whose signature ap Signature: Signature:	e Real
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witnes	Encumbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: Hughtes A.c.T. 2605 Certified for the purposes of the Real F 1900 by the person whose signature ap Signatory's name	roperty Act pears below.
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of with Name of witness: Address of witne	Incumbrances (if applicable): JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 TENANCY: July 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the ransferor. Signature of transferor: Signature of transferor: Signature: Signature applicable) Signature: Signature: Signatory's capacity: transferee	roperty Act pears below.
(I) (I) (J)	TRANSFEREE DATE 25 I certify that the p I am personally a otherwise satisfie Signature of witm Name of witness: Address of witnes	JOHANT (NOMINEES) PTY. LIMITED ACN 102 321 335 JULY 2003. person(s) signing opposite, with whom acquainted or as to whose identity I am ed, signed this instrument in my presence. ness: Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Signature of transferor: Signature of transferor: MMM Signature: Signature ap Signature: Signature ap Signatory's name: Signatory's capacity: Page 1 of number additional	roperty Act pears below.

B B004400 /B FT 5	
Req:R984488 /Doc:DL A Ref:strathfield /Src.	E52/098 /Kev:03-Mar-2009 /Sts:NO.OK /Pgs:ALL /Prt:22-Jan-2018 08:46 /Seq:1 of 1
Ner Stratifierd / Sich	-213
Form: 01T	
^a Licence: 01-05-025	TRANSFER IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Licensee: LEAP Legal	Software Pty Limited
Finn name. Snananans S	Real Property Act 1900
PRIVACY NOTE: Sec	tion 31B of the Real Property Act 1900 (RP Act) authorises the F AE52/098N
required by this form	for the establishment and maintenance of the Real Property Act
REGISTER IS MADE AVAI	Coffice of State Revenue use only
STAMP DOTT	Cline of State Revenue use only
	Starting 1001040 - (297308)
	Duty: Trans No: Trans No:
	Asst details:
(A) TORRENS TITLE	If appropriate specify the part transferred
	A/100558
(B) LODGED BY	Delivery Name, Address or DX and Telephone
(0) 0000000000	
5 () () () () () () () () () (49R 100040D C/-ESPREON
	DX 885 SYDNEY
	02 9210 0953
	Reference (optional): Lang (Sheriff)
(C) TRANSFEROR	Johant (Nominees) Pty Limited ACN 102 321 335
(D) CONSIDERATION	The transferor acknowledges receipt of the consideration of \$2,075,000.00 and as regards
(E) ESTATE	the land specified above transfers to the transferee an estate in fee simple.
(F) SHARE	
TRANSFERRED	
(G)	Encumbrances (if applicable):
HU REAN SERVICE 1405	Gabriel Hung Won KANG and Christina Kyoung Hee KANG
1411509	
ALTERATION NOTED	Ham D
()	TEMANOV, In internet
	FENANCE: Joint Tenants
DATE	
(I) Certified correct for	r the nurnoses of the Real Property Act 1900
and executed on be	half of the corporation named below by the
authorised person(s) whose signature(s) appears(s) below
pursuant to the auth	nority specified.
Corporation: Joh	ant (Nominees) Pty Limited ACN 102 321 335
Authority: sec	tion 127 of the Corporations Act 2001

Signature of authorised person:

Name of authorised person: John Savcasmo Office held: Director Signature of authorised person:

Name of authorised person: Anthony Sovcesmo Office held: Director/Secretary

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

Signature: Signatory's name: Peter Ronis Signatory's capacity: Solicitor for the Transferee

ALL HANDWRITING MUST BE IN BLOCK CAPITALS

Page 1 of <u>1</u> number additional pages sequentially

Information Provided Through REGISTRY Title Search John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: A/100558

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2018	9:40 AM	6	8/7/2015

LAND _____

> LOT A IN DEPOSITED PLAN 100558 LOCAL GOVERNMENT AREA STRATHFIELD PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP100558

FIRST SCHEDULE

CONVERTIA PTY LTD

(T AI837432)

SECOND SCHEDULE (5 NOTIFICATIONS)

1	RESERVATIONS	AND	CONDITIONS	TN	THE	CROWN	GRANT	(S)
_		T TT A TO		T 7 4		OT/OWLY	OTATIAT /	

2	G328684	RIGHT OF CARRIAGEWAY AFFECTING THE PART OF THE LAND
		ABOVE DESCRIBED SHOWN AS RIGHT OF WAY IN DP100558
3	G328684	RIGHT OF CARRIAGEWAY APPURTENANT TO THE LAND ABOVE
		DESCRIBED AFFECTING THE LAND SHOWN AS RIGHT OF WAY
		WITHIN LOT B IN DP100558
4	G328684	CROSS EASEMENTS (S.181B CONVEYANCING ACT, 1919)
		AFFECTING THE PARTY WALL ON THE COMMON BOUNDARY OF
		LOTS A AND B IN DP100558
5	AJ581884	MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

strathfield

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Title

Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

16/1/2018 8:28PM

FOLIO: B/100558

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 7176 FOL 88

Number	Type of Instrument	C.T. Issue
	TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
	CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
Z731712	MORTGAGE	EDITION 1
8607317	NOTICE OF DEATH	EDITION 2
AA674788 AA674789	DISCHARGE OF MORTGAGE	
AA674790	MORTGAGE	EDITION 3
AE527596 AE527597	DISCHARGE OF MORTGAGE	
AE527598	MORTGAGE	EDITION 4
AI36623	CAVEAT	
AI865082	WITHDRAWAL OF CAVEAT	
AI837431	DISCHARGE OF MORTGAGE	
A1837432	TRANSFER	EDITION 5
AJ581884	MORTGAGE	EDITION 6
	Number Z731712 8607317 AA674788 AA674789 AA674789 AA674790 AE527596 AE527597 AE527598 AI36623 AI36623 AI36623 AI865082 AI837431 AI837432	NumberType of Instrument TITLE AUTOMATION PROJECTTITLE AUTOMATION PROJECTCONVERTED TO COMPUTER FOLIOZ731712MORTGAGE8607317NOTICE OF DEATHAA674788DISCHARGE OF MORTGAGEAA674789TRANSFERAA674790MORTGAGEAE527596DISCHARGE OF MORTGAGEAE527597TRANSFERAE527598MORTGAGEAI36623CAVEATAI865082WITHDRAWAL OF CAVEATAI837431DISCHARGE OF MORTGAGEAI837432TRANSFERAJ581884MORTGAGE

*** END OF SEARCH ***

strathfield

	, Form: 02ND Release: 1.1 www.lpi.nsw.gov	NOTICE OF DEATI New South Wales Section 101 Real Property Act 1 8607317J
(A)	LAND	PRIVACY NOTE: this information is legally required and will-account part of the public record Torrens Title B/100558
(B)	REGISTERED DEALING	Number Torrens Title
(C)	LODGED BY	Delivery Box 644B Reference: T/S
(D)	DECEASED JOINT TENANT	MARIA PRESTIPINO
(E)	SURVIVING JOINT TENANT	ANGELO PRESTIPINO
(F) (G)	I, the surviving <u>land</u> speci STATUTORY DEC L. ANGEI	joint tenant, apply to be registered as proprietor of the interest of the deceased joint tenant in the above -field-above.
	solemnly and sin 1. died on <u>c</u> 2. is identical v accompanyi	O_PRESTIPINO cerely declare that the deceased joint tenant— ; and with the deceased named in the
	solemnly and sin 1. died on 2. is identical v accompanyin and I certify this Made and subser on $3-5-0$ Signature of withen Name of witness: Address of withe Qualification of v	0 _PRESTIPINO_ cerely declare that the deceased joint tenant— $0/1.2/2001$; and with the deceased named in the
	solemnly and sin 1. died on $\underline{\ }$ 2. is identical wards accompany and I certify this Made and subscr on $\underline{3-5-0}$ Signature of with Name of witness Address of with Qualification of w	10 _PRESTIPINO_ cerely declare that the deceased joint tenant— $1/1.2/2001$; and with the deceased named in the

	Form: 01T Release: 2.1 www.lpi.nsw.gov	v.au PRIVACY NOT	F: this information	TRANSFER New South Wales Real Property Act 1900	AA674789k
	stamp duty	Office of Stat	te Revenue use only	y	NEW SOUTH WALES DUTY 10-02-2004 0001830860-00 TRANSFER- TRANSFER DUTIABLE AMOUNT \$ ******1,950,000. DUTY \$ *******2,740.
(A)	TORRENS TITLE	Folio Id	entifier:B/10	0558	
(B)	LODGED BY	Delivery Box 448B	Name, Address or WESTP- IKING	DX and Telephone	LITEST T T TW (Shariff)
(C)	TRANSFEROR	Angelo Pr	restipino		
(D)	CONSIDERATION	The transferor	acknowledges recei	ipt of the consideration of \$ 1,	950,000.00 and as reg
(E)	ESTATE	the land speci	fied above transfer	s to the transferee an estate in t	fee simple
(F)	SHARE				
	IRANSFERRED		-		
(G)		Encumbrance	s (if applicable):		2
(G) (H)	TRANSFEREE	Encumbrance Johant (s (if applicable): Nominees) Pty	y Limited (ACN 102 32	1 335)
(G) (H) (I) (J)	TRANSFEREE	Incumbrance Johant (TENANCY: 28 Jan	s (if applicable): Nominees) Pty	y Limited (ACN 102 32)	1 335)
(G) (H) (J)	TRANSFEREE DATE I certify that the I am personally a otherwise satisfit Signature of with Name of witness Address of witness	Encumbrance Johant (TENANCY: 28 Jan person(s) signi acquainted or a ed, signed this : ness: Terr ess: 15	s (if applicable): Nominees) Pty many 2004 Ing opposite, with v s to whose identity instrument in my p	vhom Certified of Property A resence.	a 335) Forrect for the purposes of the Real Act 1900 by the transferor.
(G) (H) (J)	TRANSFEREE DATE I certify that the I am personally a otherwise satisfit Signature of with Name of witness Address of witness Address of witness Certified correct and executed on authorised perso pursuant to the a Corporation: Authority: Signature of auth	Encumbrance Johant (TENANCY: 28 Jan person(s) signi acquainted or a ed, signed this acquainted or a ed, signed this sector for the purpose behalf of the c m(s) whose sign uthority specifi Johan sector horised person:	s (if applicable): Nominees) Pty ary 2004 ng opposite, with v s to whose identity instrument in my p <i>Sharoha</i> <i>Annell St.</i> <i>a K. Nel J.</i> es of the Real Prop orporation named to nature(s) appear(s) ied. <i>(Nominer</i> <i>Sharoha</i> <i>(Nominer</i>)	vhom Certified of I am Property A resence. WWW erty Act 1900 below by the below s) Pty the Limited Signature of Signature of Signature of Signatur	1 335) Forrect for the purposes of the Real Act 1900 by the transferor. Chertyper of transferor:

Req:R984709	/Doc:DL AE527597	/Rev:03-Mar-2009	/Sts:SC.OK	/Pgs:ALL	/Prt:22-Jan-2018	09:14	/Seq:1	of 1
Ref:strathfi	eld /Src:M.				74 >			

r.strauntierd / Sic.	. 11.			
Form: 01T Licence: 01-05-025 Licensee: LEAP Legal	Software Pty Limited			
Firm name: Shanahans S	iolicitors Real Property A	ct 1900	4F527507	7
PRIVACY NOTE: See	ction 31B of the Real Property Act 1900 (RP Act) au	thorises the Reg.	1272/09/	′]
required by this form	1 for the establishment and maintenance of the Rea	Property Act Register. Se	ction 96B RP Act require	s that the
Register is made ava	ilable to any person for search upon payment of a	fee, if any.	Office of State Revenue	2
STAMP DUTY	Office of State Revenue use only		NSW Treasury	715
		1.016	4 2 -	\$20,2200
		Dut	y: Trans No:	xx4xx24
		; Ass	t detrils:	l
	r	L		!'
(A) TORRENS TITLE	If appropriate, specify the part transferred B/100558			
(B) LODGED BY	Delivery Name Address or DX and Telepho	າມຄ		CODES
()	Box LLPN: ANZ BAN	K		
	49R 126043B C/- ESPREC	N N		
5	DX 885 SYDNE	Ϋ́		
		1		
	Reference (optional): Kang			(Sheriff)
(C) TRANSFEROR	Inhant (Nominees) Ptv Limited ACN 102 321	135		
	Johant (Noninces) i ty Ennied Acit 102 521			1
(D) CONSIDERATION	The transferor acknowledges receipt of the con-	sideration of \$2,075,000.0	0 and as regards	
(E) ESTATE	the land specified above transfers to the transf	eree an estate in fee simple	2	
(F) SHARE			••	
TRANSFERRED				
(G)	Encumbrances (if applicable):			
INT - OT SHE		and the second second second		
CHT OFFEADISFUERE	Gabriel Hung Won KANG and Christina Kyou	ng Hee KANG		52
(N.S.M. 1405	9 · · · · · · · · · · · · · · · · · · ·	MARA		1
1411505 BONNOTED				
ALTERATION	TENANCY: Joint Tenants			.e.
DATE				
(J) Certified correct for	or the purposes of the Real Property Act 1900			
and executed on be	shalf of the corporation named below by the			
authorised person(s) whose signature(s) appears(s) below			
pursuant to the aut	hority specified.			. 1
Corporation: Jo	hant (Nominees) Pty Limited ACN 102 321 335			
Authority: se	ction 127 of the Corporations Act 2001		1 Tu	han
Signature of author	rised person:	Signature of authorised	person:	575) 1
Name of authorised Office held:	l person: John Sarcasmo Director	Name of authorised pers Office held:	son: Anthony S Director/Secretary	anca smo
		Certified correct for the 1900 by the person who	purposes of the Real Pr se signature appears be	operty Act low.
		Signature:	<i>.</i>	
		Signatory's name:	eter Ronis	

Signatory's name: Peter Ronis Signatory's capacity: Solicitor for the Transferee

 \hat{a}

.

÷.

Page 1 of <u>1</u> number additional pages sequentially

stiffer

.

Information Provided Through REGISTRY Title Search John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: B/100558

SEARCH DATE	TIME	EDITION NO	DATE
		the set of all the set of the set of the set	
22/1/2018	9:40 AM	6	8/7/2015

LAND

LOT B IN DEPOSITED PLAN 100558 LOCAL GOVERNMENT AREA STRATHFIELD PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP100558

FIRST SCHEDULE

CONVERTIA PTY LTD

(T AI837432)

SECOND SCHEDULE (5 NOTIFICATIONS)

1	RESERVATI	ONS AND CONDITIONS IN THE CROWN GRANT(S)
2	G328684	RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN SO
		BURDENED IN THE TITLE DIAGRAM
3	G328684	RIGHT OF CARRIAGEWAY APPURTENANT TO THE LAND ABOVE
		DESCRIBED AFFECTING THE PART(S) SHOWN SO BURDENED IN
		THE TITLE DIAGRAM
4	G328684	CROSS EASEMENTS (S181 B CONVEYANCING ACT, 1919)
		AFFECTING THE PARTY WALL(S) SHOWN ON THE COMMON
		BOUNDARY OF LOTS B & A IN DP100558
5	AJ581884	MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

strathfield

Title

Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

> SEARCH DATE -----16/1/2018 8:28PM

FOLIO: 3/15917

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 4279 FOL 64

Recorded 18/2/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
13/2/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
6/2/1991	DP807807	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

strathfield

InfoTrack an approved NSW Information Broker hereby certIfles that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE 16/1/2018 8:28PM

FOLIO: 4/15917

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 4361 FOL 163

Recorded 18/2/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
11/4/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
6/2/1991	DP807807	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

strathfield

InfoTrack an approved NSW Information Broker hereby certifles that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Title

LAND Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

16/1/2018 8:28PM

FOLIO: 100/807807

	First	Title(s):	OLD SYSTEM							
	Prior	Title(s):	3-4/15917		VOL	5330	FOL	164		
Record	ed 	Number	Type of Ir	nstrument				С.Т.	Iss	ue
6/2/1	991	DP807807	DEPOSITED	PLAN				FOLI EDIT:	O CF ION	REATED 1
4/7/2	005	AB570908	LEASE					EDIT	ION	2
23/11/20 23/11/2	016 016	AK932578 AK932586	TRANSFER LEASE					EDIT:	ION	3

*** END OF SEARCH ***

strathfield

LAND REGISTRY SERVICES Title Search Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOL	IO: 100/8	07807						
								÷.
	ç	SEARCH DAT	ſE	TIME		EDITION	NO	DATE
	2	2/1/2018		9:40 AM		3		23/11/2016
LAND)							
LOT	- 100 IN E AT STRATH LOCAL GOV PARISH OE TITLE DIA	EPOSITED FIELD ERNMENT A CONCORD GRAM DP80	PLAN 807 REA STRA COUNTY 7807	807 ATHFIELD OF CUMB	ERLAND			
FIRS	ST SCHEDU	LE						
VER	CUSTODIA	N PTY LIN	AITED				(Т	AK932578)
SEC	OND SCHED	ULE (3 NO	TIFICATI	ONS)				
1	RESERVAT	IONS AND	CONDITIC	ONS IN TH	E CROWN (GRANT (S)		
2	AB570908	LEASE T	O EUREKA	A OPERATI	ONS PTY 1	LIMITED EX	(PIRE	IS:
0	AK93	2586 CON	CURRENT	LEASE				
3	AK932586	LEASE 1 7/8/203	O VIVA E 2. OPTIC	ENERGY AU ON TO PUR	STRALIA I CHASE. OI	PTY LTD EX	KPIRE RENEW	IS: NAL: 10
		YEARS A	ND SIX I	FURTHER O	PTIONS OF	F 10 YEARS	3.	
NOTA 	ATIONS							
UNRE	EGISTERED	DEALINGS	: NIL					

*** END OF SEARCH ***

strathfield

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title, Warning: the information appearing under notations has not been formally recorded in the Register, InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Title

LAND Historical Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE _____ 16/1/2018 8:28PM

FOLIO: 8/15917

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 4708 FOL 79

Recorded	Number	Type of Instrument	C.T. Issue
21/12/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
27/2/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
30/1/2014	AI340131	CAVEAT	
12/4/2014	AI507788	WITHDRAWAL OF CAVEAT	
12/4/2014	AI507789	TRANSFER	
12/4/2014	AI507790	MORTGAGE	EDITION 1

*** END OF SEARCH ***

REGISTRY Title Search John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 8/15917

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2018	9:40 AM	1	12/4/2014

LAND

LOT 8 IN DEPOSITED PLAN 15917 LOCAL GOVERNMENT AREA STRATHFIELD PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP15917

FIRST SCHEDULE

CONVERTIA PTY LTD

(T AI507789)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 AI507790 MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

strathfield

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title, Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

16/1/2018 8:28PM

FOLIO: 9/15917

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 5268 FOL 12

Recorded	Number	Type of Instrument	C.T. Issue
18/12/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
27/6/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
3/11/1999	6312967	TRANSFER	
3/11/1999	6312968	MORTGAGE	EDITION 1
25/10/2001	8059673	DISCHARGE OF MORTGAGE	
25/10/2001	8059674	MORTGAGE	EDITION 2
8/2/2008	AD754559	DISCHARGE OF MORTGAGE	
8/2/2008	AD754560	TRANSFER	EDITION 3
7/5/2013	AH714623	TRANSFER	EDITION 4

*** END OF SEARCH ***

strathfield

Req: Ref::	R985 strat	493 /Doc:DL 63129 thfield /Src:M g~ 97-01T	967 /Rev:05-N	10v-1999 /st	s:NO.OK /Pgs:All	/Prt:22-Jan-2018 6312(10:09 /Seq:1 of 2
	Liceno	ce: 421X/0862/97	-	New Real Pr	South Wales operty Act 1900		
			c	Office of State F	levenue use only	NEW SOUTH WA 22-10-1999 SECTION 1812	LES OUTY 0000133370-011
						DETY	0 212349642228812_00
	(A)	LAND TRANSFE If appropriate, specify th or part transferred.	RRED e share	9/15917	n <u></u>	i wit	
		n en 12 ⁵ a	17				
	(B)	LODGED BY		LTO Box 421X	LHUNT & HUNT -Level 15 Gate 1 Macquarie F DX 214 Sy Reference: M	CS way Place, Sydney NSW dney (02) 9391.30 RB 2 1 5	5 B 2000 100 649018
	(C)	TRANSFEROR	OL	_GA SAVITSKY			
	(D)	acknowledges rec and as regards th	eipt of the cor e land specifie	nsideration of ad above tran	\$440.000.00 sfers to the transfe	ree an estate in fee s	simple.
	(E)	Encumbrances (in	i applicable)	1.	2.	з.	4.
	(F)	TRANSFEREE	T	SUNIL	LAL CHHABRA and S	SHIKHA LAL CHHABR	A
	(G)		(s713 LGA) TW (Sheriff)	TENAM	iCγ: Joint		Tr
							đ
		110					
			a 2	21.1			N/m
				Page	a 1 of 2 pages	CHECKED BY (LTO	use)

Req:R985493 /Doc:DL 6312967 /Rev:05-Nov-1999 /Sts:NO.OK /Pgs:ALL /Prt:22-Jan-2018 10:09 /Seq:2 of 2 Ref:strathfield /Src:M

(H) We certify this dealing correct for the purposes of the Real Property Act 1900.

DATE: 22-10-99

Signed in my presence by the transferor who is personally known to me.

Cathed Signature of Witness

CHRISTINE HBERPEEN Name of Witness (BLOCK LETTERS) 86 De Latte Cet GREENWAY Address of Witness ACT 2900

By HER ATTORNEY IGOL SAVITSKY PURSUMA TO POWER & ACTORNY NO. 94 BOBK 4246

Signature of Transferor

Signed in my presence by the transferee who is personally known to me.

A set of the set of the set of the

_____ Signature of Witness

MAX LAL Name of Witness (BLOCK LETTERS)

93 LUCAS RD, BURUCED Address of Witness

Signature of Transferee

If signed on the transferee's behalf by a solicitor or licensed conveyancer, show the signatory's full name in block letters

the second second

Req:R985494	/Doc:DL	AD754560	/Rev:11-Feb-2008	/Sts:SC.OK	/Pgs:ALL	/Prt:22-Jan-2018	10:09	/Seq:1	of	1
Ref:strathfi	eld /Sro	:M			-			-		
_										

	Form: 01T Release: 3.4 www.lands.nsw	() TRANSFER New South Wales Beal Branactic Act 4000
	PRIVACY NOTE: by this form fo the Register is n	Section 31B of the Real Property Act 1900 (RP Act) authorises : r the establishment and maintenance of the Real Proper ade available to any person for search upon payment of a fee, if any.
	STAMP DUTY	Office of State Revenue use only
		NEW SOUTH WALES DUTY 18-01-2008 0004805358-001 Section 18(2)
(A)	Folio of the Register	9/15917 DUTY \$ ###################################
(B)	LODGED BY	Document Collection Box Name, Address or DX. Telephone, and LLPN if any CODES Joseph Metledge 108 Redmyre Road Strathfield NSW 2135 T
	TRANSFERE	Reference: (Sherifl)
(C)	TRANSFEROR	Sunil Lal Chhabra AND Shikha Lal Chhabra
(D)	CONSIDERATION	The transferor acknowledges receipt of the consideration of \$ 1,000,000,00 and as recurde
(E)	ESTATE	the above folio of the Register transfers to the transfered an estate in fee simple
(F)	SHARE TRANSFERRED	
(G)		Encumbrances (if applicable):
(H)	TRANSFEREE	Alpha House Pty Ltd ACN: 003 383 097
(1)		TENANCY;
	DATE	
o 1 1 0	certify that the pe am personally acq therwise satisfied,	son(s) signing opposite, with whom Certified correct for the purposes of the Real uainted or as to whose identity I am Property Act 1900 by the transferor. signed this instrument in my presence.
S	ignature of witnes	Signature of transferor:
N A	ame of witness: ddress of witness:	B CHURCHILL AVE, STRAMFIELD

I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness: A Methe

Name of witness: Address of witness: Albert Metledge 108 Redmyre Road Strathfield NSW 2135

ALL HANDWRITING MUST BE IN BLOCK CAPITALS. 0709

Certified correct for the purposes of the Real Property Act 1900 by the transferee.

JOSEPH METLEDGE Signatur MARIE METLEDCE

Page 1 of 1 LAND

DEPARTMENT OF LANDS LAND AND PROPERTY INFORMATION DIVISION

Information Provided Through REGISTRY Title Search John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 9/15917

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2018	9:40 AM	4	7/5/2013

LAND ____

LOT 9 IN DEPOSITED PLAN 15917 LOCAL GOVERNMENT AREA STRATHFIELD PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP15917

FIRST SCHEDULE

BETA HOUSE PTY LTD

(T AH714623)

SECOND SCHEDULE (1 NOTIFICATION) _____

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

strathfield

· —	4)	age 2	of 2	page	s)	T	1	1.	-	-	11	-1	1	1	•	1		Vol	 -	12	34		-ol.	13		1
										÷.			Mortgage	NATURE				-				340		and is	17	
	-					1							N269462	NUMBER	INSTRUMENT									Sec 1 1		
/													24.4.1973	DATE				,	-CP-Yot		New Corn	This deed i		a ma st		-
													to Bank of New South Wales	PARTICULARS	SECOND SCHEDULE (con		RECISTRIE OENERAL	Janahan (H2589 Ford-on	Flatt No	inatus of Title have issual for Jota in	s cancelled as to months share to		1 2 2 10 class reas to be une l'	REGISTERED PROPRIETOR	FIRST SCHEDULE (confi
									•				26.2.	ENTER	tinued)	-								antan .		inued)
			_		-			_					1974	RED					-						VATURE	ļ
-													Services of	Signature of Registrar General		-				-					INST RUMENT	
				-																					DATE	
														CANCELLATION											ENTERED	
		0																							Signature of Registrat General	
			-911. -														4			2		4 570	4	1	Z 2450	

NEW SOUTH WALES	ERTIFICATE OF TITLE	CANCELLED	
	REAL PROPERTY ACT, 1900	12589 Ed 94	
Appln.Nos.4836 and 30144 05		SEE AUTO FOLIO	
Prior Title Vol. 12347 Fol. 137		Edition Issued	
L I certify that The Proprietors - Strate Plan b	No. 8785 is the registered proprietor of an Esta	24-10-1914 te in Fee Simple in the common property subject nevertheless to the exceptions	
in the strate schece relating to the Strate r.	at so the reservations and conditions; if any, conta-	ined in the Crown grant.	
120		Janatson (
	PLAN SHOWING LOCATION OF LAND	Registrar General.	
A of the second s	LENGTHS ARE IN METRES	3 5	WAR
() 38e			INING
	8		TH
BEDUCTIO	ON BATIO 1: 400		S DO
3		1.	CUME
RAI	1LWAY 38-885	- \\	ITN
D.P.	80144 DP 567064 3	ll l	AUST
AIM -	499.6m ²	\ · · ·	NOT
A ANA	37.035	\backslash	BER
			EMO
IFICAT			/ED F
ADDRESS FOR SERVICE OF NOTICES			ROM
E AND REFERRED TO	PILORIM AVE., STRATHFIELD. 2135.		THE
Lot 1 in Deposi in the Municipality of Strathfie 246 granted to Thomas Royley on	ted Plan 80144 and Lot 1 in Deposited 1d Parish of Concord and County of Cur 9-8-1803	Plan 567064 at Strathfield mberland, being part of Portion	LAND
GRY EXCEPTIONS ENCUMBRANCES AND INTERE	STS REFERRED TO	1962M7500	TITL
2 1. Mortgage No. H269462 to Bask of SCHEDULE OF UNIT ENTITLEMENT	New South Walosy Entered 26-2-1974. Aggregate unit entitlement: 2	- Discharged Q628250	ES O
Lot No. Strata Unit		Pro. 6sin. 29:14 1975	FFICE
1 8785 1	×		
OX	ξ. a		2
CAUTI			
ERSON	ł.		
a.			****
		N	
	ANTHENTICATED RV THE SE	CISTRAR GENERAL ARE WISTEN ALS AND THE ALS AND THE ALS AND ALS	Ref: 557

trathf:	iela		Sro	: M:	2 p	age	s)	Т	-	T	Г	T	Т	T	1	-	Т	1	T	-	-	-	 V	ol.	-	T -	12	58	39	Fo	л. Т	9.	4	ТТ	-
																																		NATURE	
																					-											4		NUMBER	CTDBLELT
																																		DATE	
															1000																				
	•																														8			PARTICUL	
																																		LARS	RECORDINGS (
																		8																	continued)
																																		ENTERED	
							-									100 antes	-			245														Signature of Registrar General	
																			-																
																																		CANCELL ATION	12
	T																						T												
	_ I	-	4	-		_1	_1.		-1-		1			~-ŀ	30	1							 				L						TO ST30	REFER ALL	AFTER REG

LANDInformation Provided ThroughREGISTRYTitle SearchJohn McLaren & Co (NSW)Ph. 02 9231 4872 Fax. 02 9233 6557

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: CP/SP8785

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2018	9:40 AM	-	

VOL 12589 FOL 94 IS THE CURRENT CERTIFICATE OF TITLE

LAND

THE COMMON PROPERTY IN THE STRATA SCHEME BASED ON STRATA PLAN 8785 WITHIN THE PARCEL SHOWN IN THE TITLE DIAGRAM

AT STRATHFIELD LOCAL GOVERNMENT AREA STRATHFIELD PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM SHEET 1 SP8785

FIRST SCHEDULE

THE OWNERS - STRATA PLAN NO. 8785 ADDRESS FOR SERVICE OF DOCUMENTS: 2 PILGRIM AVENUE STRATHFIELD 2135

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

* 2 ATTENTION IS DIRECTED TO BY-LAWS SET OUT IN SCHEDULE 2 STRATA SCHEMES MANAGEMENT REGULATION 2016

1 - 1 2 - 1

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

strathfield

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the Information contained in this document has been provided electronically by the Registrar General in accordance with Section 961(2) of the Real Property Act 1900.

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

> APPENDIX E Borehole Logs

BOREHOLE: BH101M

Preliminary Site Investigation with Limited Sampling

Location 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

Position Refer to Figure 2

Project

Job No.

E23668.E01

Client Convertia Pty Ltd

Contractor HartGeo Drill Rig Drill Rig Inclination -90°

			Drill	ing		Sampling				Field Material Desc	riptio	on			
	METHOD	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOME <u>ID</u> <u>Static Water Lev</u> BH101M ED DE DE DE DE DE DE DE DE DE	TER DETAILS ଅ	
				0 - - 1 -	0.15	ES 0.30-0.40 m PID = 0.9 ppm ES 1.00-1.10 m PID = 0.4 ppm				Concrete FILL: Silt; fine, brown to dark brown, small sub-angular to angular gravels, no odour.	D	-		Cuttings	-
1 Situ 1001 - UGU LID: EIA 1.US 2014-U7-US Prj. EIA 1.US 2014-U7-US	AD/T	-	GWNE	2 - - 3 -	2.50	ES 2.80-2.90 m PID = 0.4 ppm		× × × 1	C C C H	Weathered claystone and laminites; fine to medium grained, red, sub-angular gravels, no odour.	м	-		Screen	-
וא אם אט אבראטרב א בבסססהבטו_בטיסיטרט יישטומאייווןדוואיי באיט וובט וסיבא ועיעיטטי טמוקפו השע מוט וווי ד				4 - - 5 - -	5.20					Hole Terminated at 5.20 m T-C bit refusal. Borehole converted to monitoring well.					
				6—		This boreho	le lo	g shou	ıld be	e read in conjunction with El Australia's accompanying sta	ndar	d note	es.		

BOREHOLE: BH102

Draiget	Proliminary Site Investigation with Limited Sampling
FIOJECI	Freinninary Site Investigation with Linnieu Sampling
Location	2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

Refer to Figure 2

Position Job No. Client

E23668.E01 Convertia Pty Ltd Contractor HartGeo Drill Rig Drill Rig Inclination -90°

		Dril	ling		Sampling				Field Material Desc	riptio	on	
METHOD	PENE IRALION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0		ES 0.30-0.40 m PID = 1.2 ppm			-	FILL: Silty Clay; low to medium plasticity, dark brown to grey, with ash, no odour.			FILL -
ADT	-	GWNE	1 	1.00	ES 1.00-1.10 m PID = 1.5 ppm			C	Clay: high plasticity, red clays with brown fine silts, no odour.	M	-	NATURAL -
Lib: ElA 1.03 2014-07-05 Pŋ: ElA 1.03 2014-07-05			3	2.80		-			Hole Terminated at 2.80 m Target depth reach. Backfilled with drilling spoils to surface.			-
2018 08:30 10.0.000 Datgel Lab and In Situ Tool - DGD			- - 4 -									-
0LE 3 E2368.E01_LOGS.GPJ <4DrawingFile>> 29/01/			5									
EIA LIB 1.03.GLB Log IS AU BOREH			6—		This boreho	le log	g shou	ld be	e read in conjunction with El Australia's accompanying star	ndar	d note	25.

BOREHOLE: BH103

Project	Preliminary Site Investigation with Limited Sampling
Location	2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield N
Position	Refer to Figure 2

Convertia Pty Ltd

Job No. Client

Albert Road, Strathfield NSW Refer to Figure 2

E23668.E01

Contractor HartGeo Drill Rig Drill Rig Inclination -90°

		Dril	ling		Sampling				Field Material Desc	riptic	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0				× · · · · · · · · · · · · · · · · · · ·	-	FILL: Silty Clay; low to medium plasticity, light to dark grey, sub-angular to angular gravels, with trace rootlets, no odour.			FILL	
			_	0.50	ES 0.40-0.50 m PID = 1.3 ppm		× · · · · · · · · · · · · · · · · · · ·	СН	Silty CLAY: high plasticity, red to orange clays, with light grey to brown fine silt. trace rootlets. no odour.	-		RESIDUAL SOIL	
		ш	_										
AD/	-	GWN	1		ES 1.00-1.10 m PID = 1.3 ppm					м	-		-
			_										
			-				× · ·						
	-		2	2.00					Hole Terminated at 2.00 m				
			-						Target depth reach. Backfilled with drilling spoils to surface.				
			_										
6			-										
			_										
			3—										-
			-										
			-										
			-										
			-										
58 M 2000			4										
200			_										
2			_										
5			-										
2			5 —										-
			-										
1.000			_										
			-										
			-										.
	1		6—		This borehol	le lo	l og shou	uld be	l e read in conjunction with El Australia's accompanying sta	ndaro	d note	l es.	

- DGD | Lib: EIA 1.03 2014-07-05 Pri: EIA 1.03 2014-07-05

10.0.000 Datgel Lab and In Situ Tool

08:01/2018 08:30

<<DrawingFile>>

IS AU BOREHOLE 3 E23668.E01 LOGS.GPJ

8

FIA LIB 1 03 GLB

BOREHOLE: BH104M

Preliminary Site Investigation with Limited Sampling

Location 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

Position Job No. Client

Project

Refer to Figure 2 E23668.E01 Convertia Pty Ltd

Contractor HartGeo Drill Rig Drill Rig Inclination -90°
 Sheet
 1 OF 1

 Date Started
 23/1/18

 Date Complete
 23/1/18

 Logged
 CM

 Checked
 NF

Drilling Sampling **Field Material Description** PIEZOMETER DETAILS JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE <u>ID St</u> BH104M RECOVERED SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) H104M DEPTH RL 0 x FILL: Silty Clay; low to medium plasticity, dark brown, with trace sub-angular gravels, no odour. ES 0.30-0.40 m PID = 0.9 ppm Bentonite Casing 0.80 С Clay: high plasticity, red to orange, no odour. 1 ES 1.50-1.60 m PID = 1.6 ppm 2 GWNE AD/T Μ Sand Screen 3 4 4.30 Hole Terminated at 4.30 m T-C bit refusal. Borehole converted to monitoring well. 5 6 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH105M

Location 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW

Position Job No.

Client

Project

Refer to Figure 2 E23668.E01 Convertia Pty Ltd

Contractor HartGeo Drill Rig Drill Rig Inclination -90°

F			Dril	ling		Sampling				Field Material Desc	rip	tion	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS
				0	0.10	ES QD1 QT1 0.30-0.40 m PID = 1.2 ppm			-	Concrete FILL: Clay; high plasticity, light grey / brown to dark brown, with small sub-angular gravels, no odour.			Cuttings
	٦/T	-	٧NE	1 2 	2.50							w	Casing Bentonite
DrawingFile>> 29/01/2018 08:30 10.0.000 Datget Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05	A		GV	- 3 4 - 	4.90			× × × × × × × × × × × × × × × × × × ×	OH	Shale: highly weathered, dark brown to grey, with high plasticity clays, no odour.	,	и	Sand Screen
og IS AU BOREHOLE 3 E23668.E01_LOGS.GPJ <4				5						T-C bit refusal. Borehole converted to monitoring well.			
EIA LIB 1.03.GLB L	1			6		This borehol	e lo	g shou	ld be	e read in conjunction with EI Australia's accompanying sta	anda	ard not	tes.

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

> APPENDIX F Field Data Sheets

Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Project Number:	E23688	Engineer Name:	Cm
Date:	23-01-18	Time ON Site:	6:50 am
Travel Time:	LShrs	Time OFF Site:	12:000m
Site Address/Location:	Pilavin	AVR + 9-14 AIV	lext Rd Strathfield alsing
Climatic Conditions:	del	112 1 1 110	501 1. Col 31 61 1 1 1 Col 4 3 1
Current Site Uses: 2 10	S anartman	nt buildings	2 × hauses +
Sile	S SERVICE	Station	
Surrounding Land Uses:	our nu	0,000	
North: Raiway	(orridor		
South: Mixed - US	e apartmi	ent building +	individual dwellings
East: MIXIG-USI	aputtinen	+ UNITAINGS	
West: Apartment	buildings	(2-3-storeys)	old town houses
Current Site Condition			
Buildings Structures:			
Image: slab on ground □ sus Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential ACM Image: potential	pended slab ential lead paint	 basement Level(s) accessible soils (locations) 	□ sub-stations □ service pits / sumps
Soil / Vegetation (overgrown, di OVERGIOWN VE GIEEN PIANIS Condition of concrete, bitumen	stressed, bare soil par <i>9 ACTOSS</i> <i>OVETGTON</i> roading, flooring etc.:	tches): Ill properties, in weeds	patchy wan grasses
POOR Condf. ACTOSS ALL Evidence of USTs / UPSS Infras	CVACKEd, tructure:	Alformed (0)	ncrete driveways
Fill points o (9 - Alber Evidence of Groundwater Monit	$\begin{array}{c} n(Y eV) \\ + \ Q d) \Longrightarrow \\ \text{oring Wells:} \end{array}$	dent a seri seephoro	lice station
Presence of Waste / Rubbish / S	itockpiles:		
Cieneral 114 Aemo waste, Unusual Odours: @ 11- Listr	ter acro Ibrick ro 13 Albert ong effiv	155 all property 1664@ 11-13 Rd - burst ser rent odowr pr	ies - remnants of Albert Rd. wer along driveway resent.
Signed:	2PD	Name: Clare Ma	udigan ^{Date:} 23-1-18

Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Site Topography (slope of site, surface water, drainage, closest receptor etc.) see aerial. Hazardous materials / activities: (presence of asbestos, solid or liquid hazardous materials, infrastructure) Potential Acm noted in blyard of 1 dwelling along pilgrim Ave * Potential Acm also noted on buildings awnings Anecdotal Information: Cleaner @ 11-13 Albert Rd stated There was an issue w illegal dumping @ the property. (7:15am) Notes: Movewad - convertig (0417 899 500)) - contact John (madigar Date: Signed: Name: aure madigan 23-1-18

eia	al all re		tra diation 1	alia Geotechnicat Log	1		Sui	te 6.01, 55 Miller Stree Pyrmont, NSW 200 Ph: (02) 9516 072 Fax: (02) 9516 074 rice@eiaustralia.com.a	et, 09 22 44 au	BH No Sheet: Job No	: B 1 : E	HIOIM of 5 23688	. E01		
Client Princi Projec Locat Equip Diamo	it: (ipal: ect: / tion: omen ieter: ng in	2 - 1	ver Wer i fe i fe	tia i lin ilgris mou	pty niteo M nted	Lta d sa <u>Ave</u> dr	ern pling + 9-14 Albert Rd, 111 rig	Slope: -90° Bearing:	i d	Started Finishe Logge Check RL Su Datum	d: 2 d: 2 d: 2 d: 0 ed: face: :	3-01-18 3-01-18 M			
method	water	samples	sample method / QC	depth (m)	PID reading	material code	material descript soil type, particle characteristics colour, secondary and minor	or fines plasticity, components	E.	moisture + density/consistency	Odour (Y/N)	well cons	truction		
AUT	GN/NE .	03		1.8m	0.A ppm 0.A ppm 0.A ppm 0.A ppm		FILL: Silt, m-d l with graver (P2) ang small (P2) Nat: shale claystone t ian (ed, SNR f m N sub-ang Clays - light g plas	veather sub-ang sub-ang sub-ang nigites grain gravels	red	m m	~			ent lasing, 3 in screen	
a a a n v v c h d d V v r v PQ v	auger auger oller/ wash claw of and diatut V-bit TC-bi NMLC wirelin	screw drill* tricone bore or blad auger be t 2 core ne core	* * *	odour HC S Su odour w m s vs	index the strength of the stre	index weak noderate strong rery strong	Refus al rg Sha @: L weathering X weithering XW extremely weatherd HW highly weathered MW moderately weathered SW slightly weathered FR fresh water ✓ I evel at date / time inflow ✓ I evel at date / time	Classification symbol: dry 4 Classification symbol: description based on classification system. accompanying descri for further information moisture D dry M moist W wet Wp plastic limit W liquid limit	s and soil unified Refer iption she h. grain s vf f m c	ets ize wery fi fine mediu coarse	ne m	consistency VS very soft F firm St stiff VSt very stiff H hard Fb friable material bound	density in VL very L loos MD med D den: VD very aries - known bound - probable bou	dex loose e lium dense se r dense tary undary	

eiaustralia Contamination Remediation Geotechnical Borehole Log							Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744 service@eiaustralia.com.au					BH No: BH102 Sheet: 2 of 5 Job No: E23688				
Prin Proj Loc Equ	Principal: Project: PSI w limited sampling, Strathfield NSW Location: Pilgrim Ave Albert Rd, Strathfield NSW Equipment: VIII Rig - ute mounted Slope: -90° Diameter:											Finished: 23-01-18 Logged: CM Checked: RL Surface: Datum:				
drill	drilling information			(mat (m)		erial inform	nation material description					re + //consistency	(N/A)	well construction		
metho	water	dues 34	a sample QC	depth	1.2	mater	Gilty	soil type, particle charact colour, secondary an brown - gr	eristics of d minor (-n Mey	or fines plasticity, components	th	M moistu density	Z Odour			
					<u>Pr</u>		(+1)									
	CINNE	·.0 -1.1		am	1.5 ippm	(Ni) -	Ciay - H M brown	pla	s Red		m	N			
0/7																
A				2.84			End	ВН — Т	DR							
															13	
 t	auge auge roller, wash claw hand diatu	r screv r drill* /tricone lbore or blac auger be	v* e le bit	odour HC S Su odour	index s	nydrocarbon solvent sulfur index	weathering Classification symbols and so XW extremely weatherd description based on unified HW highly weathered classification system. Refer MW moderately weathered accompanying description sh SW slightly weathered for further information. FR fresh moisture grain			eets size verv fine		consistency VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable	density in VL very L loose MD med D dens VD very	dex loose e lium d se dens		
, PQ wn by si	V-bit TC-bit NMLC core PQ wireline core n by suffix e.g. ADV			W M S VS	w weak m moderate s strong vs very strong			level at date / time inflow complete outflow partial outflow			M moist f W wet m Wp plastic limit c WI liquid limit		m	material boundaries known boundary probable boundary possible boundary		
Client: Principa Project: Locatio Equipm Diamet		st no	ert Wi drin He	lia -og Ta P Th A Mount	ty limi ve +	Ltd. He d Al	5a 1 ber 1 11 1	mpling t Ed	Suite servic	6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744 se@eiaustralia.com.au Slope: -90° Bearing:	BH No: Sheet: Job No Started Finishe Logged Checke RL Sur Datum:	BH 3 E23 d: 23 d: 23 d: 23 d: 23 face:	103 of 5 3668 3-01-18 1-01-18			
--	---	--	-------------------------	-------------------------------------	--------------------	---	-----------------------------	---	---	---	--	---	---	--		
ethod ofor	g info	seldue	ample method / uo	epth (m)	ID reading	al information code	ation	m soil type, particl colour. sect	aterial description	on Ir fines plasticity, components	moisture + density/consistency	Odour (Y/N)	well construct	ion		
Ē		29 24 05	õ 8	05	1.3 ppm		Fi N _t iij	- silty darn g gravei - silty mogely 22 Jordne rooter	CLAY- rey, 1-m s + tro OLAY- site y ye cla	- light to n plas w are root cts - H plas ith ref M , w tra	m e m					
A/07	GNNE	1.0		2-01	1:3 ppm		TC	70								
	aug aug rolle wa: clav har	er scru ger dril er/tricc shbore w or bl nd aug	ew* * ade bit er	oddo HC S Su	ur index	hydrocarl solvent sulfur	bon	weathering XW extremely we HW highly weath MW moderately w SW slightly weath FR fresh water	atherd ared veathered hered	Classification symbols description based on u classification system. F accompanying descrip for further information.	and soil inified Refer tion sheets grain size		Consistency VS very soft S soft F firm St stiff VSt very stiff H hard Fh friable	density ind VL very li L loose MD medit D dense VD very (
Q, PQ	dia V-t TC NN wir	tube bit -bit ILC co reline c	re	odd w m s vs	our strengt	th index weak moderate strong very stro	e ong	vater Vertexter	date / time e outflow utflow	D dry M moist W wet Wp plastic limit WI liquid limit	vf ver f fin m me c co	ry fine e edium arse	Fb friable material boundar	ries known boun probable bou possible bou		

eia Boi		Remediat	e L	ia .og					s	Suite 6.01, 5 Pyrm Ph: Fax: service@eia	55 Miller Street, ont, NSW 2009 (02) 9516 0722 (02) 9516 0744 ustralia.com.au	BH No: Sheet: Job No: Started	BF 4 E2	104 of 5 3688	M 8 1	
Client Princi Projec Locat Equip Diam	: CC pal: ct: F ion: oment: eter:	Pil	gri gri dre	lim nm	L San Ave Unte materia	h p li A A d o	ng ibe (ril		ed strat J	<u>hfiel</u> Slope Bearir	-90° 19:	Finishe Logged Checke RL Sur Datum:	d: 23 : CA d: face:	-01-18 M	5	-
method	water	samples	sample method / QC	depth (m)	PID reading	material code		soil ty	material desc ype, particle characteris colour, secondary and r	ription tics or fines hinor compo	plasticity, nents	moisture + density/consistency	Odour (Y/N)	well co	nstruction	
		32			0.9 ppm		Fill	1 : Si 1- 9	ity CLA m pias raveis fe	4: di with 16-9	trace	n m)	N		10-00-00-00-00-00-00-00-00-00-00-00-00-0	
				0-8			<u>N</u>		Clay - 1	ed.	H plas	m	14	1.2954		
	15.	[.5] -1.6			1.6 ppm											
4 D/1	0 N/N															
				4.03			0	efns	<u>mind</u>	OOL	- ()			L * (t		
						(1		<u>en</u> (MStarie	ary	*)					-
d	au au ro w cl	uger sc uger dri oller/tric rashbor law or b and au	rew* III* one e blade bit	odo HC S Su	ur index	hydrocal solvent sulfur	rbon	weather XW e HW h MW n SW s FR fi	ring xtremely weatherd ighly weathered noderately weathered lightly weathered resh	C d c fr fr	lassification symbols a escription based on un lassification system. Re ccompanying descripti or further information. noisture	nd soil ified efer on sheets grain size		Consister VS ver S sof F firm St stif VSt ver H hai Eb fric	ncy densi y soft VL t L n MD f D y stiff VD rd	ity index very loose loose medium dens dense very dense

Clier Print Proju Loca Equi Diar	ore		tra ble L ver	lia -og fia -lin mour	Pli n s Ave Ited	amp drin	Suite service ling Albert Dd Strath rig	6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744 e@eiaustralia.com.au		3H No: Sheet: Job No Started Finishe Loggec Checke RL Sur Datum:	B 5 : E2 :: 2 :: 2 :: 2 :: 2 :: 2 :: 2 :: 2	H105M of 5 23668 3-01-18 3-01-18	
method	water ui Bui	samples	sample method / OC	depth (m)	PID reading	rial inform material code	ation material descriptio soil type, particle characteristics o colour, secondary and minor o	n fines plasticity, omponents		moisture + density/consistency	Odour (Y/N)	well construction	-
		0.2	COI OTI		1.2 ppm		10mm con crete Fill: Clays H plu grey to bi (F3) brown w si graveis	ls, light own / dai nall sub-	nk ang	N			Par and and a state of the stat
40/7	CMINE			2.05			Shale - dark to with days, we	nrown to athered		m	2		
				À.9			Refusal in Rock NB: Well installed c Note Rinsale batch RA0000 49.00	no.					
od				odou	ur index		weathering	Classification symbols	s and soil	-		consistency density	index
	aug rolle was claw han diat V-b TC-	er scre er drill' r/tricon hbore v or bla d auge ube t bit	ew* ne ade bit er	HC S Su odou w m s	ur strength	hydrocarbo solvent sulfur index weak moderate strong	An XW extremely weatherd HW highly weathered MW moderately weathered SW slightly weathered FR fresh Water Value level at date / time inflow	description based on classification system. accompanying description for further information moisture D dry M moist W wet	unified Refer ption shee grain si vf f m	ize very f fine mediu	ine	VS very soft VL very soft S soft L loor F firm MD mm St stiff D dee VSt very stiff VD very H hard Fb friable material boundaries known bou	ry loose ise adium dense nse ry dense indary

FIELD DATA SHEET

Project: <u>E23688</u>. EOI Sheet: <u>1</u> of <u>1</u> Site Address: <u>2-6 Pilgrim Ave ~ 9-14 Alberd Rd</u>, Stram_{Engineer}: <u>CM</u> Client: <u>(UNVERTIA Pty Ltd.</u> Sampling Date: <u>23-01-18</u>

Monitoring Bor	e ID: BHIOM	Date Drilled: 23	3-1-18 Date	Developed:	~	Drille	d Depth: 5	2_mBGL_Hole Size:mm_Measured Bore Depth: 5.0_mBTOC							
Bore Location	Description:	ocated @	2 Pilgr	im Av	e, ne	ar ra	ilway	Corridor TOC Stickup - 0 - 1 m (Relative to Ground Level)							
Date Purged:			Purging Method	l:											
SWL Before Pr	urging (m BTOC):	Time of SW	L:	S	ampling M	ethod:	Time Sample Taken:							
Volume Purged (L)	Temp (°C)	pH (units)	EC (μs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description							
								* well was dry when							
	installed														
	installed														
	,														
Monitoring Bor	BHIOH	Date Drilled: 2	3-1-18 Date	Developed:		Drille	d Depth: 4	3_mBGL Hole Size:mm Measured Bore Depth: 4-3_mBTOC							
Bore Location I	Description:	ocated	NE CC	rner	of	9-13	Alber	(f Rd							
Date Purged:			Purging Method	:											
SWL Before PL	urging (m BTOC)):	Time of SW	L:	S	ampling Me	ethod:	Time Sample Taken:							
Volume Purged (L)	Temp (∘C)	pH (units)	EC (μs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description							
								* well was installed dry							

-								
Monitoring Bore	DE BHIOSA	Date Drilled: 2	3-1-18 Date	Developed:	-	Drille	d Depth: 4	9 mBGL Hole Size mm Measured Bore Depth: 4.9 mBTOC
Bore Location I	Description: D	rivewa	y front	ing	[1-13	All	bert	Road TOC Stickup 0 .] _ m (Relative to Ground Level)
Date Purged:			Purging Method	:				
SWL Before PL	urging (m BTOC)	:	Time of SWI	L:	S	ampling M	ethod:	Time Sample Taken:
Volume Purged (L)	Temp (∘C)	рН (units)	EC (μs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description
								* well was installed dry
								,

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX G Chain of Custody and Sample Receipt Forms

Sheet	of2						5	Sam	ole N	latrix									Ana	lysis								Comments
Site: 2-6 F 9-14 Albe NSN	ligrim art Roc	Aver ad, s	nve Strat	+ nfield	Proj	ject N 366	10: 8			aint, etc.)	(/PAHs bestos	/PAHs							exchange)	I conductivity)								HM ^A Arsenic Cadmium Chromium Copper
Laboratory.	Unit 16, 3 ALEXANI P: 02 859	3 Mad DRIA N 4 0400	dox S ISW 2 F: 02	treet, 015 8594 0	499					i (i.e. Fibro, P	TRH/BTEX	TRH/BTEX	TRH/BTEX	TEX/Lead	TEX			tos	EC (cation	C (electrica	٩S	0			PAHs	HM ≜	HM B	Lead Mercury Nickel Zinc
Sample	Laboratory	Conta	iner		Samplir	ng		VTER	ų	HERS	M A CP/C	MAI	M≜/	RH/B	1/B	AHs	OCs	spes	H/C	H/E	POC	101		0	CLP	CLP	CLP	B
D	U	iy		Dat	e	Tim	ie	WP	SO	TO	IO	I	T	H	-	<u>م</u>	>	A	d	d	S	4		1		H	H	HM = Arsenic
BH101_03	1	J	2LB	23-	1-18	AI	M		X		X													_		Cadmium Chromium		
BH102 03	2																							_		Lead		
BH103_0.4	3																									Nickel		
BH104_0.3	4																											
BH10503	5										V																	
BH101 1.0	6											X																LABORATORY TURNAROUND
BH1025	- 7																											Standard
BH1031.	8																							_				24 Hours
BH104_15	6 9											V																48 Hours
BH101_2.9	9 10																					X						72 Hours
Q01		J	v										X															Other
QTB	12	V	C		1	1	(V						X													
Investigator:	I attest that	at these	e sam	les wei	re colle	ected	in ad	ccord	ance	Sam	pler's Na	ame (E	l):			Rece	eived by	(SGS)	:									
lineeugene	w [.] .			-malina	nroce	duro	¢			C	m													L	K			
Sampler's C					orato	ry				Pr	int ICO I	Mai	dia	an		Pri		1.2	~				0	1		č	+r	alia
										Sig	nature	ad	00	1		Sigi	nature	Der	eg	K		1	Conta	Id		Semed	LI C	Geotechnical
Container Ty	E SE	1746	5 51	COC			-	7		Da	te 2:	2-1	94	×		Dat	e77	11:0	0	3	30	Suit	te 6.01, 5	55 Mill	ler S	Street	, PYR	MONT NSW 2009
J= solvent was S= solvent wa	s Recei	ved: 2	3-Ja	n — 201	8					IME	PORT	ANT	- 1 0			I	<u> </u>	10	C	010	~	1		F Iab@	Ph:	9516	0722	mau
VC= glass via ZLB = Zip-Loo	F I, Teflon Sep k Bag	tum					2			Plea	ise e-n	nail lat	oorato	ry res	ults to:	lab(@eia	ustra	lia.co	om.a	u			and	gold	usua	10.001	COC July 2016 FORM v.3 - SGS

Sheet 2	of	2				Sam	ple N	Aatrix									Ana	lysis								Comments
Site: 2-6 Albert	filgrin Rd, S	m Ave + trathfie N	9-14 210 1512	Proje	ect No: 3668			, etc.)	AHs tos	Hs							hange)	nductivity)								HM <u>A</u> Arsenic Cadmium
Laboratory:	SGS Aus Unit 16, 3 ALEXAN P: 02 859	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	Street, 2015 2 8594 04	.99				(i.e. Fibro, Paint	TRH/BTEX/P/ P/PCB/Asbes	RH/BTEX/PA	RH/BTEX	FEX/Lead	TEX			S	C (cation exc	(electrical co	S	0			AHs	M≜	MB	Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sa	ampling		TER	_	HERS	A A / CP/O	NAN	V V	RH/B	RH/B	Hs	OCs	besto	/ CE	/ EC	OCA	JO			LPP	ГРH	LPH	Zinc
		Type	Date		Time	WA	SOI	Ĕ.	ΗÖ	H	H	TF	1 1	PA	2	As	Hd	Hd	SP	H			10	TO	TC	
QRI	13	JISTVC	23-1-	18	AM	X					X									✓						Cadmium
QRB		J.	J		L	V														X						Chromium Lead
																										Mercury Nickel
																										LABORATORY TURNAROUND
																										Standard
																										24 Hours
																						-				Z 72 Hours
-																					-+		_	-	_	U Other
	L							Samp	ler's Na	me (EI)	<u>к</u>			Recei	ved by	(SGS):										
Investigator: I	attest tha vith standa	t these samp ard El field sa	les were o ampling pr	collect rocedu	ted in a ures.	ccorda	ance	Cn	1										_							
Sampler's Co	omments:							Prin	nt .					Prin	t m							L	0	J.		
								Sigr	ature	ma	dig	an		Sign	<u>A</u>	re	n				P	ia		5	Ta	alia
Container Torr								d	m	adi	ga.	20			C	Pl	elf	T		10000	Conta	iminati	on R	Remedia	ntion	Geotechnical
J= solvent wash	ed, acid rins	ed, Teflon seale	ed, glass jaF	R				Date	3-	1-1	8			Date	23/	18	é.	3:3	0	Suite	6.01, 5	55 Mi	Ph.	street,	PYRN	MONT NSW 2009
P= natural HDP	E plastic bot	tle Im						IMP	ORT	ANT	:											lab(@eia	ustral	ia.com	n.au
ZLB = Zip-Lock	Bag							Pleas	e e-ma	ail labo	oratory	resul	Its to:	lab@)eiau	istral	ia.co	m.au	6							COC July 2016 FORM v.3 - SGS

- CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact	Clare Madigan	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722 (Not specified)	Telephone	+61 2 8594 0400 +61 2 8594 0499	
Email	clare.madigan@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23668 2-6 Pilgrim Ave & 9-14 Albert Rd	Samples Received	Tue 23/1/2018	
Order Number	E23668	Report Due	Mon 29/1/2018	
Samples	13	SGS Reference	SE174651	

_ SUBMISSION DETAILS

This is to confirm that 13 samples were received on Tuesday 23/1/2018. Results are expected to be ready by COB Monday 29/1/2018. Please quote SGS reference SE174651 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 23/1/2018 Yes 7.6°C Three Days

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 12 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

One water sample has been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia f Australia f

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23668 2-6 Pilgrim Ave & 9-14 Albert Rd

Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
BH101_0.3-0.4	29	14	26	11	7	10	12	8
BH102_0.3-0.4	29	14	26	11	7	10	12	8
BH103_0.4-0.5	29	14	26	11	7	10	12	8
BH104_0.3-0.4	29	14	26	11	7	10	12	8
BH105_0.3-0.4	29	14	26	11	7	10	12	8
BH101_1.0-1.1	-	-	26	-	7	10	12	8
BH102_1.0-1.1	-	-	26	-	7	10	12	8
BH103_1.0-1.1	-	-	26	-	7	10	12	8
BH104_1.5-1.6	-	-	26	-	7	10	12	8
QD1	-	-	-	-	7	10	12	8
QTB	-	-	-	-	-	-	12	-
-	Sample ID BH101_0.3-0.4 BH102_0.3-0.4 BH103_0.4-0.5 BH104_0.3-0.4 BH105_0.3-0.4 BH101_1.0-1.1 BH102_1.0-1.1 BH103_1.0-1.1 BH104_1.5-1.6 QD1 QTB	Image: Sample ID Image: Sample ID BH101_0.3-0.4 29 BH102_0.3-0.4 29 BH103_0.4-0.5 29 BH104_0.3-0.4 29 BH105_0.3-0.4 29 BH101_1.0-1.1 - BH102_1.0-1.1 - BH103_1.0-1.1 - BH103_1.0-1.1 - BH104_1.5-1.6 - QD1 - QTB -	Sample ID Io Io BH101_0.3-0.4 29 14 BH102_0.3-0.4 29 14 BH103_0.4-0.5 29 14 BH104_0.3-0.4 29 14 BH105_0.3-0.4 29 14 BH104_0.3-0.4 29 14 BH105_0.3-0.4 29 14 BH105_0.3-0.4 29 14 BH105_0.3-0.4 29 14 BH105_1.0-1.1 BH102_1.0-1.1 BH103_1.0-1.1 BH104_1.5-1.6 QD1 QTB	Sample ID 100 1100 100	Sample ID io is io io	Sample ID 29 14 26 11 7 BH101_0.3-0.4 29 14 26 11 7 BH102_0.3-0.4 29 14 26 11 7 BH104_0.3-0.4 29 14 26 11 7 BH104_1.0-1.1 - 26 - 7 BH103_1.0-1.1 - 26 - 7 BH103_1.0-1.1 - 26 - 7 BH104_1.5-1.6 - - - 7	Sample ID Io 10	Sample ID29142611171012BH101_0.3-0.429142611171012BH102_0.3-0.429142611171012BH103_0.4-0.529142611171012BH104_0.3-0.429142611171012BH104_0.3-0.429142611171012BH105_0.3-0.429142611171012BH104_1.0-1.17101212111012BH103_1.0-1.171012261171012BH103_1.0-1.17101212111012BH104_1.5-1.6710121012QD1710122671012QTB7101210121012QTB7101210121012QTB7101210121012

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23668 2-6 Pilgrim Ave & 9-14 Albert Rd

- SUMMARY	OF ANALYSIS					
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH101_0.3-0.4	2	1	1	-	-
002	BH102_0.3-0.4	2	1	1	-	-
003	BH103_0.4-0.5	2	1	1	-	-
004	BH104_0.3-0.4	2	1	1	-	-
005	BH105_0.3-0.4	2	1	1	-	-
006	BH101_1.0-1.1	-	1	1	-	-
007	BH102_1.0-1.1	-	1	1	-	-
008	BH103_1.0-1.1	-	1	1	-	-
009	BH104_1.5-1.6	-	1	1	-	-
011	QD1	-	1	1	-	-
012	QTB	-	-	1	-	-
013	QR1	-	-	-	12	8

_ CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water
013	QR1	1	7	10

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E23668 2-6 Pilgrim Ave & 9-14 Albert Rd

Sheet	of	1			Sam	ple N	latrix									Ana	lysis							Comments
Site: 2-6 9-14 A Stra	pilgrin fibert thfiel	m Ave Rd. d NSV	+ Pro	oject No: 2268			t, etc.)	AHs stos	AHs							change)	onductivity)							HM <u>A</u> Arsenic Cadmium Chromium
Laboratory:	Envirolat 12 Ashle CHATSW P: 02 991	o Services y Street, /OOD NSW 2 0 6200	2067				(i.e. Fibro, Pain	TRH/BTEX/P	ГКН/ВТЕХ/Р/	IRH/BTEX	TEX/Lead	ТЕХ			SO	EC (cation exe) (electrical co	S			PAHs	HM A	HM B	Copper Lead Mercury Nickel Zinc
Sample	Laboratory	Container	Sampli	ing	TER	_	HERS	MA/ CP/O	MAL	NA /	SH/B.	SH/B	AHs	OCs	sbest	H/CE	H/EC	OCP			CLP1	CLP	CLPI	P
D		Туре	Date	Time	WA	so	FO	ΞŎ	Ĩ	Ĩ	4	Ħ	P	×	As	p	q	SР		-	Ĕ	Ĕ	Ĭ	HM [⊡] Arsenic
QTI			23-1-18	AM		X				X														Cadmium Chromium Lead Mercury Nickel
														Envirol	ah Sam	-								LABORATORY
											E	GROUP	8 Ci	hatswoo	2 Ashi d NSW	2067							1.5.25	
				12.18			-		N	1	<u>.</u>	b No:	18	Ph: (02	2 9910	5200								Standard
							-			- , Or-	Da	te Rec	eived:	23	01	18								24 Hours
											Re	ne Rec	eived: by: 1	F.	30									48 Hours
									•		Ce Se	oling: I	ce/ice	back										C Other
												curry. I	nacia	sroken/	None		-							
				1			Sam	oler's Na	ame (E):			Rece	eived by	(Enviro	olab):								•
Investigator:	: I attest tha with standa	t these samp ard El field s	oles were coll ampling proce	ected in a edures.	accord	lance	C	m,												1	, Le			
Sampler's C	Comments:			Pri Sig	nt LUN nature	e	M	ădi P	qun	Pri Sig	int nature)F					eia	al	IS	tr	alia			
Container Ty J= solvent was S= solvent wa P= natural HD VC= glass via ZLB = Zip-Loc	pe: shed, acid rins shed, acid rins PE plastic bot I, Teflon Septu ck Bag			Dat IMP Plea	PORT se e-m	3 - 1 ANT nail lat	- () : porato	8 ry resi	ults to:	Dai lab(@eia	. <i>).</i> 18 ustra	lia.co	7 <i>30</i> om.a	u	Suite 6.	.01, 55 <mark>l</mark> a	Miller Ph: ab@ei	Stree 951 austra	et, PYF 6 0722 alia.co	2 m.au COC July 2016 FORM v.3 - SGS			

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E2268, Strathfield
Envirolab Reference	183782
Date Sample Received	23/01/2018
Date Instructions Received	23/01/2018
Date Results Expected to be Reported	29/01/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	8.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX H Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	_ LABORATORY DETAILS				
Contact Client Address	Clare Madigan EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	61 2 95160722	Telephone	+61 2 8594 0400				
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499				
Email	clare.madigan@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com				
Project	E23668 2-6 Pilgrim Ave & 9-14 Albert Rd	SGS Reference	SE174651 R0				
Order Number	E23668	Date Received	23/1/2018				
Samples	13	Date Reported	29/1/2018				

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Bennet Lo Senior Organic Chemist/Metals Chemist

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE174651 R0

VOC's in Soil [AN433] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			QTB
			SOIL
			23/1/2018
PARAMETER	UOM	LOR	SE174651.012
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

SE174651 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 23/1/2018	- 23/1/2018	- 23/1/2018	- 23/1/2018	- 23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 23/1/2018	- 23/1/2018	- 23/1/2018	- 23/1/2018	- 23/1/2018
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

SE174651 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			5011	5011	SOII	5011	SOIL
					-	-	-
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.2	0.6	<0.1	0.4	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	1.2	0.2	0.8	<0.1
Pyrene	mg/kg	0.1	0.3	1.3	0.2	0.7	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.2	0.8	0.1	0.5	<0.1
Chrysene	mg/kg	0.1	0.2	0.6	<0.1	0.4	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.8	0.1	0.6	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.4	<0.1	0.2	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	0.7	0.1	0.4	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.5	<0.1	0.3	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.4	<0.1	0.2	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.9</td><td><0.2</td><td>0.5</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.9	<0.2	0.5	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.3</td><td>1.0</td><td><0.3</td><td>0.6</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.3	1.0	<0.3	0.6	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>1.0</td><td><0.2</td><td>0.6</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	1.0	<0.2	0.6	<0.2
Total PAH (18)	mg/kg	0.8	1.4	7.4	<0.8	4.4	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.4	7.4	<0.8	4.4	<0.8

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6
			SOIL	SOIL	SOIL	SOIL
PARAMETER	11014		23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	DOM ma/ka	0.1	SE174651.006	SE174651.007	SE174651.006	SE174651.009
	mg/kg	0.1	-0.1	-0.1	-0.1	-0.1
	nig/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

SE174651 R0

OC Pesticides in Soil [AN420] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOII	SOII	SOII	SOIL	SOIL
			-	-	-	-	-
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

SE174651 R0

OP Pesticides in Soil [AN420] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	- 23/1/2018	-
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

SE174651 R0

PCBs in Soil [AN420] Tested: 24/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL - 23/1/2018	SOIL - 23/1/2018	SOIL - 23/1/2018	SOIL - 23/1/2018	SOIL - 23/1/2018
PARAMETER	UOM ma/ka	LUR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

SE174651 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Arsenic, As	mg/kg	3	13	5	9	8	6
Cadmium, Cd	mg/kg	0.3	0.3	0.6	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	18	9.3	11	14	7.6
Copper, Cu	mg/kg	0.5	120	140	27	67	6.3
Lead, Pb	mg/kg	1	530	2800	72	350	41
Nickel, Ni	mg/kg	0.5	8.1	8.9	9.7	4.9	1.4
Zinc, Zn	mg/kg	0.5	92	190	46	83	9.1

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
Arsenic, As	ma/ka	3	14	6	4	7	4
			17	Ū		•	
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	22	31	11	19	6.7
Copper, Cu	mg/kg	0.5	19	14	12	17	9.3
Lead, Pb	mg/kg	1	33	110	36	39	30
Nickel, Ni	mg/kg	0.5	<0.5	1.4	1.0	0.8	1.5
Zinc, Zn	mg/kg	0.5	13	22	18	13	16

SE174651 R0

Mercury in Soil [AN312] Tested: 25/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Mercury	mg/kg	0.05	0.15	0.43	<0.05	0.08	<0.05

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

SE174651 R0

Moisture Content [AN002] Tested: 25/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
% Moisture	%w/w	0.5	8.9	18	13	12	18

			BH101_1.0-1.1	BH102_1.0-1.1	BH103_1.0-1.1	BH104_1.5-1.6	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.006	SE174651.007	SE174651.008	SE174651.009	SE174651.011
% Moisture	%w/w	0.5	14	14	14	16	17

			QTB
			SOIL
			23/1/2018
PARAMETER	UOM	LOR	SE174651.012
% Moisture	%w/w	0.5	<0.5

SE174651 R0

Fibre Identification in soil [AN602] Tested: 25/1/2018

			BH101_0.3-0.4	BH102_0.3-0.4	BH103_0.4-0.5	BH104_0.3-0.4	BH105_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/1/2018	23/1/2018	23/1/2018	23/1/2018	23/1/2018
PARAMETER	UOM	LOR	SE174651.001	SE174651.002	SE174651.003	SE174651.004	SE174651.005
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

SE174651 R0

VOCs in Water [AN433] Tested: 24/1/2018

			QR1
PARAMETER	UOM	LOR	WATER - 23/1/2018 SE174651.013
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 24/1/2018

			QR1
			WATER
			23/1/2018
PARAMETER	UOM	LOR	SE174651.013
TRH C6-C9	μg/L	40	<40
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C10	μg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE174651 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 25/1/2018

			QR1
			WATER - 23/1/2018
PARAMETER	UOM	LOR	SE174651.013
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16 (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 (F2) - Naphthalene	µg/L	60	<60

SE174651 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 29/1/2018

			QR1
			WATER
			- 23/1/2018
PARAMETER	UOM	LOR	SE174651.013
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	71

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 29/1/2018

			QR1
			WATER
			23/1/2018
PARAMETER	UOM	LOR	SE174651.013
Mercury	mg/L	0.0001	<0.0001

METHOD	
METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

- FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS -		LABORATORY DETAIL	S
Contact Client Address	Clare Madigan El AUSTRALIA SUITE 6.01	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St
	55 MILLER STREET PYRMONT NSW 2009		Alexandria NSW 2015
Telephone	61 2 95160722 (Not specified)	Telephone	+61 2 8594 0400 +61 2 8594 0499
Email	clare.madigan@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23668 2-6 Pilgrim Ave & 9-14 Albert Rd E23668 5	SGS Reference Date Received Date Reported	SE174651 R0 23 Jan 2018 29 Jan 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

 $\mathcal{O}_{\mathbf{a},\mathbf{c}}$

Bennet Lo Senior Organic Chemist/Metals Chemis

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia

Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

RESULTS Fibre Identification in soil Method								
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*		
SE174651.001	BH101_0.3-0.4	Soil	110g Clay,Soil,Rocks	23 Jan 2018	No Asbestos Found	<0.01		
SE174651.002	BH102_0.3-0.4	Soil	285g Clay,Soil,Rocks	23 Jan 2018	No Asbestos Found	<0.01		
SE174651.003	BH103_0.4-0.5	Soil	154g Clay,Soil,Rocks	23 Jan 2018	No Asbestos Found	<0.01		
SE174651.004	BH104_0.3-0.4	Soil	150g Clay,Sand,Soil, Rocks	23 Jan 2018	No Asbestos Found	<0.01		
SE174651.005	BH105_0.3-0.4	Soil	230g Clay,Soil,Rocks	23 Jan 2018	No Asbestos Found	<0.01		

METHOD SUMMARY

METHODOLOGY SUMMARY	
Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.	
Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.	
AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."	
The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-	
 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions. 	
	 METHODOLOGY SUMMARY Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue `for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf). The fibres detected may or may not be asbestos fibres. AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg." The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if. (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrvsotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 183782

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E2268, Strathfield
Number of Samples	1 Soil
Date samples received	23/01/2018
Date completed instructions received	23/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	29/01/2018
Date of Issue	25/01/2018
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Leon Ow, Chemist Steven Luong, Senior Chemist

Authorised By

کھ

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		183782-1
Your Reference	UNITS	QT1
Date Sampled		23/01/2018
Type of sample		Soil
Date extracted	-	24/01/2018
Date analysed	-	25/01/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	111

svTRH (C10-C40) in Soil		
Our Reference		183782-1
Your Reference	UNITS	QT1
Date Sampled		23/01/2018
Type of sample		Soil
Date extracted	-	24/01/2018
Date analysed	-	24/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	83

Acid Extractable metals in soil		
Our Reference		183782-1
Your Reference	UNITS	QT1
Date Sampled		23/01/2018
Type of sample		Soil
Date prepared	-	24/01/2018
Date analysed	-	24/01/2018
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	6
Copper	mg/kg	4
Lead	mg/kg	22
Mercury	mg/kg	<0.1
Nickel	mg/kg	2
Zinc	mg/kg	10

Moisture		
Our Reference		183782-1
Your Reference	UNITS	QT1
Date Sampled		23/01/2018
Type of sample		Soil
Date prepared	-	24/01/2018
Date analysed	-	25/01/2018
Moisture	%	17

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
Date analysed	-			25/01/2018	[NT]		[NT]	[NT]	25/01/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	110	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	94	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	108	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	115	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	116	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	115	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	<1	
Surrogate aaa-Trifluorotoluene	%		Org-016	116	[NT]		[NT]	[NT]	115	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
Date analysed	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	
Surrogate o-Terphenyl	%		Org-003	91	[NT]	[NT]	[NT]	[NT]	97	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
Date analysed	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	98	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	106	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nator Quidelines recommend that Thermotolerant Caliform, Eccard Entergancei, & E. Cali layola are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

> APPENDIX I QA/QC Assessment

I1 QUALITY CONTROL PROGRAM

I1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table I-1**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate Laboratory – Laboratory duplicate and matrix spike duplicate	< 30 % relative percentage difference (RPD [%]) Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Completeness	Completion (%)	-

Table I-1	Sampling Data C	Quality Indicators
-----------	-----------------	--------------------

I1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

- C_{O} = Concentration obtained for the primary sample; and
- C_R = Concentration obtained for the blind replicate or split duplicate sample.

I2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil samples collected during the investigations works were as follows:

- Blind field duplicate (soil);
- Inter laboratory duplicate (soil);

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

- Trip blank;
- Trip spike; and
- Rinsate Blank.

Analytical results for the tested soil QA/QC samples collected during sampling, including the calculated RPD values between primary and duplicate samples, are presented in **Table T-2**.

12.1 SOIL INVESTIGATION & SOIL VALIDATION

I2.1.1 Blind Field Duplicate

Sample QD1 was collected as a blind field duplicate (BFD) of the primary sample BH105M_0.3-0.4. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD soil sample was analysed for TRHs, BTEX, selected heavy metals.

Calculated RPD values were found to be within the Data Acceptance Criteria.

I2.1.2 Inter Laboratory Duplicate

One inter laboratory duplicate (ILD) being QT1 was collected from primary sample BH105M_0.3-0.4. The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TRHs, BTEX and selected heavy metals. The RPD values calculated for the ILD sample was found to be within the Data Acceptance Criteria.

Furthermore, soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Analytical results indicated that the samples collected were representative of the soils present at respective sampling locations.

I2.1.3 Trip Blank

One trip blank (TB) sample being sample TB1 was prepared by the primary laboratory, and analysed for TRHs and BTEX by the primary laboratory. The soil TB sample results were reported below the laboratory LOR, indicating that satisfactory sample transport and handling conditions were achieved.

I2.1.4 Trip Spike

One trip spike (TS) sample was unable to be tested due to limited availability at the time of sampling and laboratory analysis.

I2.1.5 Rinsate Blank

One rinsate blank (RB) sample being sample QR1 was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals. The RB sample results were reported below the laboratory LOR. However, overall soil analytical results obtained for investigation are all well below adopted investigation criteria, and in light of this, the soil data collected is considered to be suitable for interpretation.

I2.3 Assessment of Field QA/QC Data

All soil samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the remediation and validation works to be appropriate and the results to be acceptable.

I3.1 LABORATORY QA/QC

I3.1 Laboratory Accreditation

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy, respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate.

I3.2 SAMPLE HOLDING TIMES

All sample holding times were generally within standard environmental protocols as tabulated in **Appendix J.**

I3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in **Appendix J**.

I3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

I3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Duplicate Samples (LDS) for the analysis batches indicated several exceedances for the following:

- Phenanthrene (107%), Fluoranthrene (108%), Pyrene (116%), Benzo(a)anthracene (97%), Chrysene (76%), Benzo(b+j)fluoranthene (79%), benzo(a)pyrene (98%), Carcinogenic PAHs, BaP TEQ <LOR=0 (92%), Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 (86%) and Total PAHs (18) within sample SE174411RE.005 exceeding the acceptable ranges and the DAC due to RPD failed acceptance criteria due to sample heterogeneity;
- Lead (113%) from SE174711.004 exceeded the acceptable range due to RPD failed acceptance criteria due to sample heterogeneity; and
- Finally mercury (70%) from SE174711.003 exceeded the acceptable range due to recovery failed acceptance criteria due to sample heterogeneity.

I3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

I3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC.

I3.8 CONCLUDING REMARK

Based on the laboratory QA/QC results, EI considers that all the data confirms that the analytical results for soil laboratory testing were valid and useable for interpretation purposes.

Preliminary Site Investigation with Limited Sampling 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW Report No. E23668.E01_Rev1

APPENDIX J Laboratory QA/QC Policies and DQO's

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Clare Madigan	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	clare.madigan@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23668 2-6 Pilgrim Ave & 9-14 Albert Rd	SGS Reference	SE174651 R0	
Order Number	E23668	Date Received	23 Jan 2018	
Samples	13	Date Reported	29 Jan 2018	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Mercury in Soil	1 item
	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	10 items
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil, 1 Water
Date documentation received	23/1/2018	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	7.6°C	Sufficient sample for analysis	Yes
Turnaround time requested	Three Days		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

ISW 2015 Australia ISW 2015 Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method:	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.3-0.4	SE174651.001	LB140267	23 Jan 2018	23 Jan 2018	23 Jan 2019	25 Jan 2018	23 Jan 2019	29 Jan 2018
BH102_0.3-0.4	SE174651.002	LB140267	23 Jan 2018	23 Jan 2018	23 Jan 2019	25 Jan 2018	23 Jan 2019	29 Jan 2018
BH103_0.4-0.5	SE174651.003	LB140267	23 Jan 2018	23 Jan 2018	23 Jan 2019	25 Jan 2018	23 Jan 2019	29 Jan 2018
BH104_0.3-0.4	SE174651.004	LB140267	23 Jan 2018	23 Jan 2018	23 Jan 2019	25 Jan 2018	23 Jan 2019	29 Jan 2018
BH105_0.3-0.4	SE174651.005	LB140267	23 Jan 2018	23 Jan 2018	23 Jan 2019	25 Jan 2018	23 Jan 2019	29 Jan 2018
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE174651.013	LB140306	23 Jan 2018	23 Jan 2018	20 Feb 2018	29 Jan 2018	20 Feb 2018	29 Jan 2018
Mercury in Soil							Method:	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.3-0.4	SE174651.001	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH102_0.3-0.4	SE174651.002	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH103_0.4-0.5	SE174651.003	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH104_0_3-0_4	SE174651 004	I B140247	23 Jan 2018	23.Jan 2018	20 Feb 2018	25 Jan 2018	20 Eeb 2018	29 Jan 2018

BH105_0.3-0.4	SE174651.005	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH101_1.0-1.1	SE174651.006	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH102_1.0-1.1	SE174651.007	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH103_1.0-1.1	SE174651.008	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
BH104_1.5-1.6	SE174651.009	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018
QD1	SE174651.011	LB140247	23 Jan 2018	23 Jan 2018	20 Feb 2018	25 Jan 2018	20 Feb 2018	29 Jan 2018

Moisture Content							Method: N	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.3-0.4	SE174651.001	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH102_0.3-0.4	SE174651.002	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH103_0.4-0.5	SE174651.003	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH104_0.3-0.4	SE174651.004	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH105_0.3-0.4	SE174651.005	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH101_1.0-1.1	SE174651.006	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH102_1.0-1.1	SE174651.007	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH103_1.0-1.1	SE174651.008	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
BH104_1.5-1.6	SE174651.009	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
QD1	SE174651.011	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018
QTB	SE174651.012	LB140234	23 Jan 2018	23 Jan 2018	06 Feb 2018	25 Jan 2018	30 Jan 2018	29 Jan 2018

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted BH101 0.3-0.4 SE174651.001 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH102_0.3-0.4 SE174651.002 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 SE174651.003 LB140163 BH103_0.4-0.5 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH104 0.3-0.4 SE174651.004 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH105_0.3-0.4 SE174651.005 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH101 1.0-1.1 SE174651.006 LB140163 23 Jan 2018 05 Mar 2018 29 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 BH102_1.0-1.1 SE174651.007 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH103_1.0-1.1 SE174651.008 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH104_1.5-1.6 SE174651.009 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 QD1 SE174651.011 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018

OP Pesticides in Sol

							Wouldd. I	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.3-0.4	SE174651.001	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH102_0.3-0.4	SE174651.002	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH103_0.4-0.5	SE174651.003	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH104_0.3-0.4	SE174651.004	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH105_0.3-0.4	SE174651.005	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH101_1.0-1.1	SE174651.006	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH102_1.0-1.1	SE174651.007	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH103_1.0-1.1	SE174651.008	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018
BH104_1.5-1.6	SE174651.009	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018

Method: ME (ALI) (ENI)/(ANI/20)

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due 06 Feb 2018 OD1 SE174651.011 LB140163 23 Jan 2018 23 Jan 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 PAH (Polynuclear Aromatic Hydro arbons) in Soil Method: ME-(AU)-[ENV]AN420 Analysis Due Analysed Sample Name Sample No. QC Ref Received Extraction Due Extracted BH101 0.3-0.4 SE174651.001 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH102_0.3-0.4 SE174651.002 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH103 0.4-0.5 SE174651.003 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH104_0.3-0.4 SE174651.004 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 23 Jan 2018 23 Jan 2018 24 Jan 2018 BH105_0.3-0.4 SE174651.005 LB140163 06 Feb 2018 05 Mar 2018 29 Jan 2018 BH101 1.0-1.1 SE174651 006 I B140163 23 Jan 2018 23 Jan 2018 06 Eeb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH102 1.0-1.1 SE174651.007 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 SE174651.008 05 Mar 2018 BH103_1.0-1.1 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 29 Jan 2018 BH104_1.5-1.6 SE174651.009 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 QD1 SE174651.011 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 Method: ME-(AU)-[ENVIAN420 PCBs in Soil Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH101_0.3-0.4 SE174651.001 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH102 0.3-0.4 SE174651.002 LB140163 05 Mar 2018 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 29 Jan 2018 BH103_0.4-0.5 SE174651.003 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 SE174651.004 LB140163 23 Jan 2018 23 Jan 2018 24 Jan 2018 05 Mar 2018 BH104 0.3-0.4 06 Feb 2018 29 Jan 2018 BH105 0.3-0.4 SE174651.005 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 SE174651.006 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH101_1.0-1.1 BH102_1.0-1.1 SE174651.007 23 Jan 2018 23 Jan 2018 05 Mar 2018 LB140163 06 Feb 2018 24 Jan 2018 29 Jan 2018 BH103 1.0-1.1 SE174651.008 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH104_1.5-1.6 SE174651.009 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 QD1 SE174651.011 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Name Sample No. QC Ref Received Extracted Analysis Due Analysed Sampled Extraction Due BH101_0.3-0.4 SE174651.001 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH102 0.3-0.4 SE174651 002 I B140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH103 0.4-0.5 SE174651.003 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH104_0.3-0.4 SE174651.004 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH105 0.3-0.4 SE174651.005 23 Jan 2018 22 Jul 2018 22 Jul 2018 LB140235 23 Jan 2018 25 Jan 2018 29 Jan 2018 BH101_1.0-1.1 SE174651.006 LB140235 23 Jan 2018 22 Jul 2018 22 Jul 2018 23 Jan 2018 25 Jan 2018 29 Jan 2018 BH102 1.0-1.1 SE174651.007 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH103_1.0-1.1 SE174651.008 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 BH104 1.5-1.6 SE174651.009 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 QD1 SE174651.011 LB140235 23 Jan 2018 23 Jan 2018 22 Jul 2018 25 Jan 2018 22 Jul 2018 29 Jan 2018 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Name Sample No. QC Ref Sampled Received Extracted Analysis Due Analysed Extraction Due QR1 SE174651.013 LB140276 23 Jan 2018 23 Jan 2018 22 Jul 2018 29 Jan 2018 22 Jul 2018 29 Jan 2018 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH101 0.3-0.4 SE174651.001 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018 BH102 0.3-0.4 SE174651.002 LB140163 23 Jan 2018 23 Jan 2018 06 Feb 2018 24 Jan 2018 05 Mar 2018 29 Jan 2018

BH103_0.4-0.5	SE174651.003	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH104_0.3-0.4	SE174651.004	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH105_0.3-0.4	SE174651.005	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH101_1.0-1.1	SE174651.006	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH102_1.0-1.1	SE174651.007	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH103_1.0-1.1	SE174651.008	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH104_1.5-1.6	SE174651.009	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
QD1	SE174651.011	LB140163	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
IRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
OB1	SE174651 013	LB140242	23.Jan 2018	23.Jan 2018	30 Jan 2018	25 Jan 2018	06 Mar 2018	29.Jan 2018	

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil	OC's in Soil Method: ME-(AU)-[ENV]AN433								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH101_0.3-0.4	SE174651.001	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH102_0.3-0.4	SE174651.002	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH103_0.4-0.5	SE174651.003	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH104_0.3-0.4	SE174651.004	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH105_0.3-0.4	SE174651.005	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH101_1.0-1.1	SE174651.006	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH102_1.0-1.1	SE174651.007	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH103_1.0-1.1	SE174651.008	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
BH104_1.5-1.6	SE174651.009	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
QD1	SE174651.011	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
QTB	SE174651.012	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	
VOCs in Water							Method: I	ME-(AU)-[ENV]AN433	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QR1	SE174651.013	LB140176	23 Jan 2018	23 Jan 2018	30 Jan 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018	

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydro	atile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH101_0.3-0.4	SE174651.001	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH102_0.3-0.4	SE174651.002	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH103_0.4-0.5	SE174651.003	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH104_0.3-0.4	SE174651.004	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH105_0.3-0.4	SE174651.005	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH101_1.0-1.1	SE174651.006	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH102_1.0-1.1	SE174651.007	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH103_1.0-1.1	SE174651.008	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
BH104_1.5-1.6	SE174651.009	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
QD1	SE174651.011	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
QTB	SE174651.012	LB140161	23 Jan 2018	23 Jan 2018	06 Feb 2018	24 Jan 2018	05 Mar 2018	29 Jan 2018			
Volatile Petroleum Hydro	/olatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
OP1	SE174651 012	1 01/0176	22 Jap 2019	22 Jan 2018	20 Jap 2019	24 Jap 2019	05 Mar 2018	20 Jan 2019			

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: ME	-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	99
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	116
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	107
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	102
	BH105_0.3-0.4	SE174651.005	%	60 - 130%	113
OP Pesticides in Soil				Method: ME-	-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	100
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	98
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	102
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	94
	BH105_0.3-0.4	SE174651.005	%	60 - 130%	96
d14-p-terphenyl (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	78
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	80
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	90
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	100
	BH105_0.3-0.4	SE174651.005	%	60 - 130%	94
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101_0.3-0.4	SE174651.001	%	70 - 130%	100
	BH102_0.3-0.4	SE174651.002	%	70 - 130%	98
	BH103_0.4-0.5	SE174651.003	%	70 - 130%	102
	BH104_0.3-0.4	SE174651.004	%	70 - 130%	94
	BH105_0.3-0.4	SE174651.005	%	70 - 130%	96
	BH101_1.0-1.1	SE174651.006	%	70 - 130%	94
	BH102_1.0-1.1	SE174651.007	%	70 - 130%	98
	BH103_1.0-1.1	SE174651.008	%	70 - 130%	90
	BH104_1.5-1.6	SE174651.009	%	70 - 130%	90
d14-p-terphenyl (Surrogate)	BH101_0.3-0.4	SE174651.001	%	70 - 130%	78
	BH102_0.3-0.4	SE174651.002	%	70 - 130%	80
	BH103_0.4-0.5	SE174651.003	%	70 - 130%	90
	BH104_0.3-0.4	SE174651.004	%	70 - 130%	100
	BH105_0.3-0.4	SE174651.005	%	70 - 130%	94
	BH101_1.0-1.1	SE174651.006	%	70 - 130%	98
	BH102_1.0-1.1	SE174651.007	%	70 - 130%	82
	BH103_1.0-1.1	SE174651.008	%	70 - 130%	102
	BH104_1.5-1.6	SE174651.009	%	70 - 130%	100
d5-hitrobenzene (Surrogate)	BH101_0.3-0.4	SE174651.001	%	70 - 130%	104
	BH102_0.3-0.4	SE174651.002	%	70 - 130%	96
	BH103_0.4-0.5	SE174651.003	%	70 - 130%	94
	BH104_0.3-0.4	SE174651.004		70 - 130%	90
	BH105_0.3-0.4	SE174651.005		70 - 130%	88
	BH101_1.0-1.1	SE174651.000		70 - 130%	96
	BH102_1.0-1.1 BH103_1.0-1.1	SE174651.007		70 - 130%	90
	BH104_1.5-1.6	SE174651.000	%	70 - 130%	92
DODe in Cell	51104_1.0 1.0	02114001.000	70	Methods ME	
PCBs in Sol				Method: ME-	-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachioro-m-xylene (TCMX) (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	99
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	110
	BH103_0.4-0.5	SE174651.003	70	60 - 130%	107
	BH104_0.3-0.4	SE174651.004		60 120%	112
	BH103_0.3-0.4	3E174051.005	76	00 - 130 %	113
				Method: ME-	-(AU)-[ENV]AN43:
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	82
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	87
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	84
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	93

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH105_0.3-0.4	SE174651.005	%	60 - 130%	80
	BH101_1.0-1.1	SE174651.006	%	60 - 130%	75
	BH102_1.0-1.1	SE174651.007	%	60 - 130%	93
	BH103_1.0-1.1	SE174651.008	%	60 - 130%	79
	BH104_1.5-1.6	SE174651.009	%	60 - 130%	78
	QD1	SE174651.011	%	60 - 130%	92
	QTB	SE174651.012	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	97
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	73
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	88
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	112
	BH105_0.3-0.4	SE174651.005	%	60 - 130%	87
	BH101_1.0-1.1	SE174651.006	%	60 - 130%	98
	BH102_1.0-1.1	SE174651.007	%	60 - 130%	104
	BH103_1.0-1.1	SE174651.008	%	60 - 130%	83
	BH104_1.5-1.6	SE174651.009	%	60 - 130%	90
	QD1	SE174651.011	%	60 - 130%	76
	QTB	SE174651.012	%	60 - 130%	103
d8-toluene (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	78
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	77
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	73
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	//
	BH105_0.3-0.4	SE174651.005		60 130%	77
	BH101_1.0-1.1	SE174651.000		60 - 130%	74
	BH102_1.0-1.1	SE174651.007		60 - 130%	74
	BH104_1.5-1.6	SE174651.000	%	60 - 130%	74
	001	SE174651.003	%	60 - 130%	73
	QTB	SE174651.011	%	60 - 130%	78
Dibromofluoromethane (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	77
Sistementario (Surreguto)	BH102_0.3-0.4	SE174651.002	%	60 - 130%	78
	BH103 0.4-0.5	SE174651.003	%	60 - 130%	85
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	109
	BH105 0.3-0.4	SE174651.005	%	60 - 130%	84
	BH101 1.0-1.1	SE174651.006	%	60 - 130%	74
	BH102_1.0-1.1	SE174651.007	%	60 - 130%	82
	BH103_1.0-1.1	SE174651.008	%	60 - 130%	98
	BH104_1.5-1.6	SE174651.009	%	60 - 130%	77
	QD1	SE174651.011	%	60 - 130%	98
	QTB	SE174651.012	%	60 - 130%	77
VOCs in Water				Method: M	E-(AU)-IENVIAN433
Daramotor	Sample Name	Sample Number	Unite	Critoria	Pocovory %
Bromofluorohenzene (Surrogate)		SE174651 012	Onnes		
d4 1 2 diploresthese (Surregate)		SE174051.013		40 - 130%	112
de teluene (Surregate)		SE174651.013		40 - 130 %	105
Dibromofluoromethane (Surrogate)	OB1	SE174651.013	%	40 - 130%	114
	QIVI	02114001.010	70	40 100%	
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 - 130%	82
	BH102_0.3-0.4	SE174651.002	%	60 - 130%	87
	BH103_0.4-0.5	SE174651.003	%	60 - 130%	84
	BH104_0.3-0.4	SE174651.004	%	60 - 130%	93
	BH105_0.3-0.4	SE174651.005	%	60 - 130%	80
	BH101_1.0-1.1	SE174651.006	%	60 - 130%	75
	BH102_1.0-1.1	SE174651.007	%	60 - 130%	93
	BH103_1.0-1.1	SE174651.008	%	60 - 130%	79
	BH104_1.5-1.6	SE1/4651.009	%	60 - 130%	78
d4.4.2 disblassethere (Curressee)		5E1/4651.011	%	00 - 130%	92
u4-1,2-uicnioroetnane (Surrogate)	BH101_0.3-0.4	SE174651.001	%	60 430%	9/
	DH1U2_U.3-U.4	3E1/4051.002	%	00 - 130%	13

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Name Sample Number Units Criteria Parameter d4-1,2-dichloroethane (Surrogate) BH103_0.4-0.5 SE174651.003 % 60 - 130% 88 BH104_0.3-0.4 SE174651.004 % 60 - 130% 112 BH105 0.3-0.4 SE174651.005 % 60 - 130% 87 BH101_1.0-1.1 SE174651.006 % 60 - 130% 98 BH102_1.0-1.1 SE174651.007 % 60 - 130% 104 BH103 1.0-1.1 SE174651.008 % 60 - 130% 83 BH104_1.5-1.6 SE174651.009 % 60 - 130% 90 SE174651.011 60 - 130% QD1 % 76 BH101 0.3-0.4 78 d8-toluene (Surrogate) SE174651.001 % 60 - 130% BH102 0.3-0.4 SE174651.002 % 60 - 130% 77 SE174651.003 60 - 130% 73 BH103_0.4-0.5 % BH104 0.3-0.4 SE174651.004 % 60 - 130% 77 BH105 0.3-0.4 SE174651.005 % 60 - 130% 82 SE174651.006 BH101_1.0-1.1 % 60 - 130% 77 BH102 1.0-1.1 SE174651.007 % 60 - 130% 74 BH103_1.0-1.1 SE174651.008 % 60 - 130% 77 SE174651.009 74 BH104_1.5-1.6 % 60 - 130% QD1 SE174651.011 % 60 - 130% 73 Dibromofluoromethane (Surrogate) BH101_0.3-0.4 SE174651.001 % 60 - 130% 77 SE174651.002 BH102_0.3-0.4 % 60 - 130% 78 BH103 0.4-0.5 SE174651.003 % 60 - 130% 85 BH104_0.3-0.4 SE174651.004 % 60 - 130% 109 BH105_0.3-0.4 SE174651.005 % 60 - 130% 84 74 BH101 1.0-1.1 SE174651.006 % 60 - 130% BH102 1.0-1.1 SE174651 007 % 60 - 130% 82 BH103_1.0-1.1 SE174651.008 60 - 130% 98 % BH104_1.5-1.6 SE174651.009 60 - 130% % 77 QD1 SE174651.011 % 60 - 130% 98 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Units Parameter Sample Nam Sample Numb Recovery % QR1 SE174651.013 40 - 130% Bromofluorobenzene (Surrogate) % 101 d4-1,2-dichloroethane (Surrogate) QR1 SE174651.013 % 60 - 130% 112 d8-toluene (Surrogate) QR1 SE174651.013 % 40 - 130% 105 40 - 130% Dibromofluoromethane (Surrogate) QR1 SE174651.013 % 114

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB140306.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Met	hod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB140247.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB140163.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	102
OP Pesticides in Soil				Methr	od: ME-(AU)-IENVIAN420

ticides in Soil OP

Sample Number	Parameter	Units	LOR	Result
LB140163.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	92
	d14-p-terphenyl (Surrogate)	%	-	94
PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB140163.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1

METHOD BLANKS

SE174651 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paramet Units Result LB140163.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 <0.1 Benzo(a)anthracene mg/kg 0.1 Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 94 2-fluorobiphenyl (Surrogate) % 96 d14-p-terphenyl (Surrogate) % 104 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Units Parameter LOR LB140163.001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 102 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB140235.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 <0.3 <0.5 Copper, Cu 0.5 mg/kg Lead, Pb mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn 0.5 <0.5 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number LOR Result Parameter Units LB140276.001 Arsenic, As <1 µg/L 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 Lead, Pb <1 µg/L 1 Nickel. Ni <1 µg/L 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Parameter Units Result LB140163.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total 110 <110 mg/kg TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 LOR Sample Number Units Result Parameter LB140242.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Numb Units LOR Parameter

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continue	ed)			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB140161.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	89
		Bromofluorobenzene (Surrogate)	%	-	82
	Totals	Total BTEX	mg/kg	0.6	<0.6
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB140176.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	115
		d4-1,2-dichloroethane (Surrogate)	%	-	107
		d8-toluene (Surrogate)	%	-	119
		Bromofluorobenzene (Surrogate)	%	-	86
Volatile Petroleum Hyd	Irocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB140161.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	89
Volatile Petroleum Hyd	Irocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB140176.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	115
		d4-1,2-dichloroethane (Surrogate)	%	-	107
		d8-toluene (Surrogate)	%	-	119
		Bromofluorobenzene (Surrogate)	%	-	86

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water					Metho	d: ME-(AU)-[I	envjan311(p	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.013	LB140306.006	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Mercury in Soil Method				od: ME-(AU)-	ENVJAN312			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.004	LB140247.014	Mercury	mg/kg	0.05	0.08	0.06	106	30
SE174711.003	LB140247.024	Mercury	mg/kg	0.05	0.1045343340	0.2171197314	61	70

Moisture Content

Moisture Content					Method: ME-(AU)-[ENV]AN002			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.011	LB140234.011	% Moisture	%w/w	0.5	17	18	36	7
SE174711.005	LB140234.022	% Moisture	%w/w	0.5	0	0	200	0
SE174713.006	LB140234.031	% Moisture	%w/w	0.5	0	0	200	0

asticides in Soil

OC Pesticides in s	Soll						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.005	LB140163.035		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.164	30	4
PAH (Polynuclear	Aromatic Hydrocarbo	ns) in Soil					Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174411RE.00	LB140163.031	Naphthalene	mg/kg	0.1	<0.1	0.01	200	0
5		2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	0.04	200	0
		Acenaphthene	mg/kg	0.1	<0.1	0.01	200	0
		Fluorene	mg/kg	0.1	<0.1	0.02	200	0
		Phenanthrene	mg/kg	0.1	0.7	0.2	53	107 ②
		Anthracene	mg/kg	0.1	0.2	0.04	125	52
		Fluoranthene	mg/kg	0.1	1.0	0.29	46	108 ②
		Pyrene	mg/kg	0.1	0.9	0.25	47	116 ②
		Benzo(a)anthracene	mg/kg	0.1	0.5	0.16	62	97 ②
		Chrysene	mg/kg	0.1	0.3	0.14	74	76 ②

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

r Art (Folynuciear	A OTHANG TYUI OCAID	oney in con (contin					ivieuri	ou. wi⊇-(AO)-	Terra baranta
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174411RE.00	LB140163.031		Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	0.2	60	79 ②
5			Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.05	107	71
			Benzo(a)pyrene	mg/kg	0.1	0.4	0.14	66	98 ②
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.2	0.07	113	52
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(ghi)pervlene	ma/ka	0.1	0.1	0.06	130	33
			Carcinogenic PAHs_BaP TEQ <lob=0< td=""><td>TEO (mg/kg)</td><td>0.2</td><td>0.5</td><td>0 1794</td><td>65</td><td>92 Ø</td></lob=0<>	TEO (mg/kg)	0.2	0.5	0 1794	65	92 Ø
			Carcinogenic PAHs, Ball TEQ < LOR I	TEO (mg/kg)	0.2	0.6	0.2004	74	73
					0.0	0.0	0.2304	74 50	
				TEQ (IIIg/Kg)	0.2	0.0	0.2349	58	00 @
			I otal PAH (18)	mg/kg	0.8	4.9	1.4	56	111 @
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.47	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.51	30	8
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.56	30	6
SE174651.006	LB140163.033		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	ma/ka	0.1	<0.1	0	200	0
			Phenanthrene	ma/ka	0.1	<0.1	0.03	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Elucranthono	mg/kg	0.1	<0.1	0.04	200	0
			Pitorana	mg/kg	0.1	<0.1	0.04	200	0
				ing/kg	0.1	<0.1	0.05	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.07	184	0
			Chrysene	mg/kg	0.1	<0.1	0.05	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.06	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.04	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.01	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs. BaP TEQ <lor=lor 2<="" td=""><td>TEQ (ma/ka)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (ma/ka)	0.2	<0.2	0.121	175	0
			Total PAH (18)	ma/ka	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	ma/ka		0.4	0.45	30	2
		Gunogates	2 fluorobinhenyl (Surrogate)	mg/kg		0.5	0.47	30	
				marka		0.5	0.47	30	
			d 14-p-terprieriyi (Surrogate)	mg/kg	-	0.5	0.43	30	13
PCBs in Soil							Meth	od: ME-(AU)-	[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.005	LB140163.031		Arochlor 1016	ma/ka	0.2	<0.2	0	200	0
			Arochlor 1221	ma/ka	0.2	<0.2	0	200	 0
			Arochlor 1222	mg/kg	0.2	<0.2	0	200	0
			Alochior 1232	mg/kg	0.2	<0.2	0	200	
				mg/kg	0.2	<0.2	0	200	
			Arochior 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.164	30	4
Total Recoverable	Flements in Soil/Ma	ste Solide/Materia	is by ICPOES				Method: ME		N040/AN33
		our concornatoria					Moundu. ME	6 rol-frink he	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.005	LB140235.014		Arsenic, As	mg/kg	3	6	5	47	16
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	7.6	6.8	37	11
			Copper, Cu	mg/kg	0.5	6.3	8.6	37	31
			Lead, Pb	ma/ka	1	41	44	32	6
			Nickel. Ni	ma/ka	0.5	1.4	1.7	62	20
			Zinc Zn	ma/ka	0.5	0.1	11	50	20
			Lino, L11	iiig/kg	0.0	0.1		50	21

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable	Elements in Soil/Wa	ste Solids/Materials	by ICPOES (continued)				Method: ME-(A	AU)-[ENV]A	N040/AN32
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174711.004	LB140235.024		Arsenic, As	ma/ka	3	7,9620544929	7.4788403100	43	6
			Cadmium. Cd	ma/ka	0.3	0.0992156323	0.1699736434	200	0
			Chromium. Cr	ma/ka	0.3	18.096931333	18.1671829457	33	0
			Copper. Cu	ma/ka	0.5	53.576441447	52.3918759689	31	2
			Lead. Pb	ma/ka	1	18,794247970	75.922720930	31	113 @
			Nickel, Ni	ma/ka	0.5	11.509013348	13.3129356589	34	15
			Zinc Zn	ma/ka	0.5	69 916127700	91 404813953	31	8
Trace Metale (Dies	colved) in Water by I	CDMC			0.0		Methor	• ME (ALI)	
Original	Duplicato		Paramotor	Unite	LOP	Original	Duplicato (Critoria %	
Original	Duplicate			Units	LOR	Original	Duplicate		KPD //
SE174707.018	LB140276.008		Arsenic, As	μg/L	1	-0.012	-0.014	200	0
			Cadmium, Cd	μg/L	0.1	0.001	0	200	0
				µg/L	1	0.003	0	200	
			Copper, Cu	μg/L	1	0.183	0.03	200	0
			Lead, Pb	µg/L	1	0.014	0.011	200	0
			Nickel, Ni	µg/L	1	0.023	0.046	200	0
			Zinc, Zn	μg/L	5	1.423	1.561	200	0
TRH (Total Recov	erable Hydrocarbons	s) in Soil					Method	d: ME-(AU)-	-[ENV]AN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE174651.006	LB140163.032		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE174661.002	LB140163.028		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	ma/ka	45	29	45	152	0
			TBH C29-C36	ma/ka	45	0	0	200	0
			TBH C37-C40	ma/ka	100	0	0	200	0
			TRH C10-C36 Total	ma/ka	110	0	45	200	0
			TRH C10-C40 Total (E bands)	ma/ka	210	0	0	200	
		TRH F Bands	TBH >C10-C16 (E2)	ma/ka	25	0	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	ma/ka	25	0	0	200	0
			TRH >C16-C34 (F3)	ma/ka	90	0	0	200	0
			TBH >C34-C40 (F4)	ma/ka	120	0	0	200	0
VOC's in Soil							Methor	+ ME-(ALI)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE174651.007	LB140161.014	Monocyclic	Benzene	ma/ka	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	ma/ka	0.1	<0.1	<0.1	200	0
			Ethylbenzene	ma/ka	0.1	<0.1	<0.1	200	0
			m/p-xvlene	ma/ka	0.2	<0.2	<0.2	200	0
			o-xvlene	ma/ka	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	ma/ka	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4 1	4.9	50	18
		Gunogates	d4.1.2.dichloroethane (Surrogate)	mg/kg		5.2	5.0	50	- 10
			de toluene (Surrogate)	mg/kg		3.7	3.0	50	
			Promofluorobonzono (Surrogato)	mg/kg		4.7	3.5	50	
		Tatala	Tatal Vilance	mg/kg		4.7	4.4	200	
		Totals		mg/kg	0.5	<0.5	<0.6	200	
			TOTALDIEX	iiig/kg	0.0	~0.0	<0.0	200	
VUUS IN WATOR	Dunlieste		Dovementor		LOP	Outotoot	Nethod	. M⊏-(AU)-	
SE174554 001	Duplicate	Monosvalia	Parameter	Units	LOR	Original	O 12	200	RPD %
JL 174334.001	LD 140170.020	Aromatic		μις//	0.5	-0.0	0.12	162	
		Aromatic		µg/L	0.5	~U.3	0.02	200	
			m/o-xvlene	µg/L	0.5	~0.5	0.03	200	
				µg/L	1	-0.5	0.14	200	0
			U-Ayielle	µg/L	0.5	<0.5	0.22	200	U

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (co	ontinued)						Meth	nod: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174554.001	LB140176.020	Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.04	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.3	4.19	30	24
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	4.24	30	19
			d8-toluene (Surrogate)	µg/L	-	4.9	4.99	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	4.5	4.68	30	5
SE174554.003	LB140176.021	Monocyclic	Benzene	µg/L	0.5	<0.5	0.11	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	0.28	200	0
			Ethylbenzene	µg/L	0.5	<0.5	0.03	200	0
			m/p-xylene	µg/L	1	<1	0.06	200	0
			o-xylene	µg/L	0.5	<0.5	0.04	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.03	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.3	4.31	30	20
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.1	4.36	30	15
			d8-toluene (Surrogate)	µg/L	-	4.9	5.28	30	7
			Bromofluorobenzene (Surrogate)	µg/L	-	4.9	4.57	30	7
Volatile Petroleum	Hydrocarbons in So	al de la companya de					Meth	nod: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174651.007	LB140161.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.9	30	18
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	5.0	30	5
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.9	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.4	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
Volatile Petroleum	Hydrocarbons in Wa	ater					Mett	nod: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE174554.001	LB140176.020		TRH C6-C10	μg/L	50	<50	44	146	0
			TRH C6-C9	μg/L	40	<40	39	134	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.7	4.61	30	21
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.4	4.5	30	19
			d8-toluene (Surrogate)	μg/L	-	4.9	4.83	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.9	5.2	30	5
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0.12	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	43.09	149	0
SE174554.003	LB140176.021		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	µg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.6	4.62	30	20
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.4	4.63	30	15
			d8-toluene (Surrogate)	μg/L	-	4.9	4.95	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	5.1	5.06	30	0
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.11	200	0
			TRH C6-C10 minus BTEX (F1)	ug/L	50	<50	-0.52	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Aercury in Soll Method: ME-(AU)-[EN]							
Mercury in Soll						Method: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	s LOR	Result	Expected	Criteria %	Recovery %
LB140247.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB140163.002		Heptachlor	mg/kg	0.1	0.3	0.2	60 - 140	129
		Aldrin	mg/kg	0.1	0.3	0.2	60 - 140	134
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	115
		Dieldrin	mg/kg	0.2	0.3	0.2	60 - 140	130
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	120
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	85
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	99
OP Pesticides in So						N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB140163.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	80
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	83
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	84
		Ethion	mg/kg	0.2	1.5	2	60 - 140	73
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
PAH (Polynuclear A	romatic Hydrocart	oons) in Soil				N	lethod: ME-(A	U)-[ENV]AN420
PAH (Polynuclear A Sample Number	romatic Hydrocart	<mark>xons) In Soil</mark> Parameter	Units	LOR	Result	N Expected	<mark>/lethod: ME-(</mark> A Criteria %	NU)-[ENV]AN420 Recovery %
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	oons) in Soil Parameter Naphthalene	Units mg/kg	LOR 0.1	Result 4.2	Expected 4	Aethod: ME-(A Criteria % 60 - 140	NU)-[ENV]AN420 Recovery % 104
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	pons) in Soil Parameter Naphthalene Acenaphthylene	Units mg/kg mg/kg	LOR 0.1 0.1	Result 4.2 4.0	K Expected 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN420 Recovery % 104 101
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Dens) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 4.2 4.0 3.9	Expected 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	NU)-[ENV]AN420 Recovery % 104 101 98
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	pons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1	Expected 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	KU)-[ENV]AN420 Recovery % 104 101 98 102
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Dens) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9	Expected 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	CU)-[ENV]AN420 Recovery % 104 101 98 102 98
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9 3.1 3.9	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9 3.9 3.9 3.5	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Parameter Naphthalene Acenaphthylene Acenaphthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9 3.1 3.9 3.5 4.5	Expected 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 88 112
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Parameter Naphthalene Acenaphthylene Acenaphthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9 3.5 4.5 0.5	Expected 4 4 4 4 4 4 4 4 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 112 92
PAH (Polynuclear A Sample Number LB140163.002	romatic Hydrocart	Parameter Naphthalene Acenaphthylene Acenaphthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.2 4.0 3.9 4.1 3.9 3.5 4.5 0.5 0.5	Expected 4 4 4 4 4 4 4 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 112 92 102
PAH (Polynuclear A Sample Number LB140163.002	surrogates	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Beitze(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	Result 4.2 4.0 3.9 4.1 3.9 3.5 4.5 0.5 0.5 0.5	Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 112 92 102 102 102
PAH (Polynuclear A Sample Number LB140163.002 PCBs in Soil	surrogates	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - -	Result 4.2 4.0 3.9 4.1 3.9 3.5 4.5 0.5 0.5 0.5	Expected 4 4 4 4 4 4 4 5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Method: ME-(A	XU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 112 92 102 102 102 XU)-[ENV]AN420
PAH (Polynuclear A Sample Number LB140163.002 PCBs in Soil Sample Number	surrogates	parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - LOR	Result 4.2 4.0 3.9 4.1 3.9 3.5 4.5 0.5 0.5 0.5 0.5 0.5 0.5	Expected 4 4 4 4 4 4 4 4 5 0.5 0.5 0.5 0.5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Aethod: ME-(A Criteria %	KU)-[ENV]AN420 Recovery % 104 101 98 102 98 96 88 112 92 102 102 102 KU)-[ENV]AN420 Recovery %

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements in So	erable Elements in Soll/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	V]AN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB140235.002	Arsenic, As	mg/kg	3	53	50	80 - 120	105
	Cadmium, Cd	mg/kg	0.3	53	50	80 - 120	105
	Chromium, Cr	mg/kg	0.3	53	50	80 - 120	106
	Copper, Cu	mg/kg	0.5	54	50	80 - 120	108
	Lead, Pb	mg/kg	1	53	50	80 - 120	106
	Nickel, Ni	mg/kg	0.5	53	50	80 - 120	107
	Zinc, Zn	mg/kg	0.5	54	50	80 - 120	109
Trace Metals (Dissolved) in Water	by ICPMS				N	Nethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB140276.002	Arsenic, As	μg/L	1	20	20	80 - 120	102
	Cadmium, Cd	μg/L	0.1	23	20	80 - 120	115
	Chromium, Cr	μg/L	1	20	20	80 - 120	102
	Copper, Cu	μg/L	1	21	20	80 - 120	106
	Lead, Pb	μg/L	1	24	20	80 - 120	118
	Nickel, Ni	µg/L	1	21	20	80 - 120	107

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
				20	ACSUIT	LApecieu		Necovery /
LB140163.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
	TDU E Davida	TRH C29-C36	mg/kg	45	<45	40	60 - 140	68
	I RH F Bands	TRH >C10-C16 (F2)	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	/5
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	65
RH (Total Recove	erable Hydrocarbo	ns) in Water				I	Method: ME-(Al	J)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB140242.002		TRH C10-C14	μg/L	50	1200	1200	60 - 140	104
		TRH C15-C28	μg/L	200	1400	1200	60 - 140	117
		TRH C29-C36	µg/L	200	1400	1200	60 - 140	116
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1300	1200	60 - 140	111
		TRH >C16-C34 (F3)	µg/L	500	1400	1200	60 - 140	120
		TRH >C34-C40 (F4)	µg/L	500	690	600	60 - 140	115
/OC's in Soil							Method: ME-(Al	J)-IENVIAN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
L B140161 002	Monocyclic	Benzene	malka	0.1	23	2.9	60 - 140	78
LD140101.002	Aromatic		mg/kg	0.1	3.0	2.9	60 - 140	103
	Aromatic	Ethylhenzene	mg/kg	0.1	2.0	2.9	60 - 140	76
		m/n-xy/ene	malka	0.1	4.2	5.8	60 - 140	73
			mg/kg	0.2	2.1	2.0	60 - 140	73
	Surragatas	Dibromofluoromothone (Surragate)	mg/kg	0.1	4.6	5	60 140	02
	Sunogales	d4.1.2 diploreethane (Surregete)	mg/kg		4.0	5	60 140	92
		de teluene (Surregete)	mg/kg		4.0	5	60 140	01
		Demofluere (Surrogate)	ng/kg	-	4.5	5	60 - 140	00
		Biomoliuorobenzene (Surrogate)	iiig/kg	-	4.0	5	00 - 140	91
VOCs in Water							Method: ME-(Al	J)-[ENV]AN4
Sample Number								
		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ?
LB140176.002	Monocyclic	Parameter Benzene	Units µg/L	LOR 0.5	Result 50	Expected 45.45	Criteria % 60 - 140	Recovery 9 110
LB140176.002	Monocyclic Aromatic	Parameter Benzene Toluene	Units μg/L μg/L	0.5 0.5	Result 50 50	Expected 45.45 45.45	Criteria % 60 - 140 60 - 140	Recovery 9 110 110
LB140176.002	Monocyclic Aromatic	Paramèter Benzene Toluene Ethylbenzene	Units μg/L μg/L μg/L	LOR 0.5 0.5 0.5	Result 50 50 50	Expected 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 9 110 110 110
LB140176.002	Monocyclic Aromatic	Paramèter Benzene Toluene Ethylbenzene m/p-xylene	Units µg/L µg/L µg/L µg/L	LOR 0.5 0.5 0.5 1	Result 50 50 50 100	Expected 45.45 45.45 45.45 90.9	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 9 110 110 110 110
LB140176.002	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	Units µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 0.5 1 0.5	Result 50 50 50 100 50	Expected 45.45 45.45 45.45 90.9 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 6 110 110 110 110 110
LB140176.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 -	Result 50 50 50 100 50 4.8	Expected 45.45 45.45 90.9 45.45 5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 9 110 110 110 110 110 97
LB140176.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - -	Result 50 50 50 100 50 4.8 4.5	Expected 45.45 45.45 90.9 45.45 5 5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 5 110 110 110 110 110 97 90
LB140176.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - -	Result 50 50 50 100 50 4.8 4.5 5.4	Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5	Criteria % 60 - 140 60 - 140	Recovery 110 110 110 110 110 97 90 107
LB140176.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene O-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) B-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - - -	Result 50 50 50 100 50 4.8 4.5 5.4 5.1	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5	Criteria % 60 - 140 60 - 140	Recovery 5 110 110 110 110 110 97 90 107 102
LB140176.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - - - -	Result 50 50 50 50 4.8 4.5 5.4 5.1	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5	Criteria % 60 140 60 - 140	Recovery 5 110 110 110 110 110 97 90 107 102 J)-[ENV]AN4
LB140176.002 Volatile Petroleum Sample Number	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene O-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - - - -	Result 50 50 50 100 50 4.8 4.5 5.4 5.1 8 Result	Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 - 140 Contention (Contention) 60 - 140 60 - 140	Recovery 9 110 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9
LB140176.002 Volatile Petroleum Sample Number	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - - - LOR 25	Result 50 50 50 50 50 4.5 5.4 5.1	Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 2 45 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 - 140 Criteria % 60 - 140	Recovery 9 110 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9 91
LB140176.002 Volatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Image: State Sta	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 - - - - - LOR 25 20	Result 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 23.2	Criteria % 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140	Recovery 9 110 110 110 110 97 90 107 102 U)-[ENV]AN4 Recovery 9 91 93
LB140176.002 Volatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Image: State (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units µg/L	LOR 0.5 0.5 1 0.5 - - - - - - - - - - - - -	Result 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5	Criteria % 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 9 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9 91 93 92
LB140176.002 Volatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units µg/L	LOR 0.5 0.5 1 0.5 - - - - LOR 25 20 -	Result 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5	Criteria % 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 5 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 5 91 93 92 81
LB140176.002 Volatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	Result 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5	Criteria % 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 5 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 5 91 93 92 81 86
LB140176.002 /olatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Frameter TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	Result 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 -	Recovery 9 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9 91 93 92 81 86 91
LB140176.002 /olatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) Bromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - LOR 25 20 - - - 25 20 - - - - - - - - - - - - -	Result 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 Expected 24.65 23.2 5 5 5 5 7,25	Criteria % 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 1	Recovery 5 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 5 91 93 92 81 86 91 120
/olatile Petroleum Sample Number LB140161.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) icil Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - LOR 25 20 - - - 25 25	Result 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 7.25	Criteria % 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 1	Recovery 4 110 110 110 110 97 90 107 102 J)-[ENV]AM4 Recovery 4 91 93 92 81 86 91 120
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) icil Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Vater	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - LOR 25 20 - - - 25 -	Result 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 7.25	Criteria % 60 - 140 60 - 140 Method: ME-(Al 60 - 140 60 - 140	Recovery 5 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 5 91 93 92 81 86 91 120 J)-[ENV]AN4
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethylbenzene m/p-sylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Vater Parameter	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.5 1 0.5 - - - - - LOR 25 20 - - - 25 LOR	Result 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 Expected 24.65 23.2 5 5 5 5 7.25 Expected	Criteria % 60 - 140 60 -	Recovery 5 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 5 81 86 91 120 J)-[ENV]AN4 Recovery 5
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) tcoll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-toluene (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10	Units μg/L μg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.5 1 0.5 - - - - - - - - - - - - -	Result 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 -	Recovery 9 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9 91 93 92 81 86 91 120 J)-[ENV]AN4 Recovery 9 81 86 91 120 39 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 86 91 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 81 86 91 93 92 93 93 92 81 86 91 93 92 93 93 92 81 86 91 93 92 93 93 92 93 93 92 81 86 91 93 92 93 93 92 93 93 92 93 93 92 93 93 93 93 92 93 93 93 93 93 93 93 94 94 94 94 94 94 94 94 95 96 97 97 97 97 98 98 98 98 98 98 98 98 98 98
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethylbenzene m/p-sylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	Units μg/L μg/kg mg/kg mg/kg <	LOR 0.5 0.5 1 0.5 - - - - - - - - - - - - -	Result 50 50 50 50 50 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140	Recovery 9 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery 9 91 93 92 81 86 91 120 J)-[ENV]AN4 Recovery 9 98 98
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethylbenzene m/p-xylene O-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units μg/L μg/kg mg/kg	LOR 0.5 0.5 1 0.5 - - - - - 25 LOR 50 40 -	Result 50 50 50 50 100 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 23.2 5 5 5 5 5 7.25 Expected 946.63 818.71 5	Criteria % 60 - 140 60 -	Recovery 5 110 110 110 110 90 107 102 J)-[ENV]AN4 Recovery 5 91 93 92 81 86 91 120 J)-[ENV]AN4 Recovery 5 98 98 93 93
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N	Parameter Benzene Toluene Ethytbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) fth C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 <tr< td=""><td>Units μg/L μg/Rg mg/kg μg/L μg/L μg/L μg/L μg/L</td><td>LOR 0.5 0.5 1 0.5 - - - - - LOR 25 20 - - - 25 20 - - - 25 20 - - - - - - - - - - - - -</td><td>Result 50 50 50 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25</td> 22 4.6 4.0 4.3 4.5 <25</tr<>	Units μg/L μg/Rg mg/kg μg/L μg/L μg/L μg/L μg/L	LOR 0.5 0.5 1 0.5 - - - - - LOR 25 20 - - - 25 20 - - - 25 20 - - - - - - - - - - - - -	Result 50 50 50 50 50 50 50 50 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 -	Recovery * 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery * 91 93 92 81 86 91 120 J)-[ENV]AN4 Recovery * 98 93 93 93 93 94
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluoromethane (Surrogate) toll Parameter TRH C6-C10 TRH C6-C29 Dibromofluorobenzene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C30 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units μg/L mg/kg μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.5 0.5 1 0.5 - - - - - - - - - - - - -	Result 50 50 50 50 100 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 -	Recovery \$ 110 110 110 110 97 90 107 102 J)-[ENV]AN4 Recovery \$ 91 93 92 81 86 91 120 J)-[ENV]AN4 Recovery \$ 98 93 93 93 93 93 94
LB140176.002 /olatile Petroleum Sample Number LB140161.002 /olatile Petroleum Sample Number LB140176.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in N Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluoromethane (Surrogate) Bromofluoromethane (Surrogate) Obbromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Units mg/kg	LOR 0.5 0.5 1 0.5 - - - - LOR 25 20 - - - 25 20 - - - - - - - - - - - - -	Result 50 50 50 50 100 50 4.8 4.5 5.4 5.1 Result <25	Expected 45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	Criteria % 60 - 140 60 - 140 Method: ME-(Al 60 - 140 60 - 140	Recovery 9 110 110 110 110 97 90 107 102 J)-[ENV]AN4: Recovery 9 91 93 92 81 86 91 120 J)-[ENV]AN4: Recovery 9 98 93 93 93 93 93 93 94 101 95

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AL								I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE174622.038	LB140306.004	Mercury	mg/L	0.0001	0.0080	<0.0001	0.008	100

Mercury in Soil

Aercury in Soil					Ме	thod: ME-(Al	J)-[ENV]AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE174622.043	LB140247.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	95

OC Pesticides in Soil

OC Pesticides in	Soil						Me	ethod: ME-(AU)-[[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE174651.003	LB140163.036		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-	
			Alpha BHC	mg/kg	0.1	<0.1	-	-	
			Lindane	mg/kg	0.1	<0.1	-	-	
			Heptachlor	mg/kg	0.1	<0.1	0.2	123	
			Aldrin	mg/kg	0.1	<0.1	0.2	125	
			Beta BHC	mg/kg	0.1	<0.1	- - - - 0.2 123 0.2 125 - - 0.2 70 - -		
			Delta BHC	mg/kg	ng/kg 0.1 <0.1 ng/kg 0.1 <0.1	0.2	70		
			Heptachlor epoxide	mg/kg	0.1	<0.1	- 0.2 - 0.2 - - - - - - - - - - - - -	-	
			o,p'-DDE	mg/kg	0.1	<0.1	-	- - 123 125 - - - - - - - - - - - - -	
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-	
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-	
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-	
			trans-Nonachlor	mg/kg	0.1	<0.1	-	Child Ketcorety /// - - 0.2 123 0.2 125 - - 0.2 125 - - 0.2 70 - - <	
			p,p'-DDE	mg/kg	0.1	<0.1	-		
			Dieldrin	mg/kg	0.2	<0.2	0.2	118	
			Endrin	mg/kg	0.2	<0.2	0.2	110	
			o,p'-DDD	mg/kg	0.1	<0.1	-	- 123 125 - 70 - - - - - - - - - - - - -	
			o,p'-DDT	mg/kg	0.1	<0.1	. . 0.2 123 0.2 125 . . 0.2 70 . .		
			Beta Endosulfan	mg/kg	0.2	<0.2			
			p,p'-DDD	mg/kg	0.1	<0.1	-	. . 0.2 123 0.2 125 . . 0.2 70 . .	
			p,p'-DDT	mg/kg	0.1	<0.1	0.2		
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-	
			Methoxychlor	mg/kg	0.1	<0.1	-	-	
			Endrin Ketone	mg/kg	0.1	<0.1	-	-	
			Isodrin	mg/kg	0.1	<0.1	-	-	
			Mirex	mg/kg	0.1	<0.1	-	-	
			Total CLP OC Pesticides	mg/kg	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	93	

00.0	One and a Neural and	Demonster	11-14-		Oniminal	Omiles	D 0/
QC Sample	Sample Number	Parameter	Units	LOR	Original	Бріке	Recovery%
SE174651.003	LB140163.032	Dichlorvos	mg/kg	0.5	<0.5	2	103
		Dimethoate	mg/kg	0.5	<0.5	-	-
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	96
		Fenitrothion	mg/kg	0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	96
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	-	-
		Ethion	mg/kg	0.2	<0.2	2	81
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	82
PAH (Polynuclear Aromatic Hydrocarbons) in Soli						Me	thod: ME-(AU)-[E

QC Sample	Sample Number	Parameter	Units	LOR

VVJAN420

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclea	r Aromatic Hydrocarbon	ns) in Soil (con	tinued)				Me	thod: ME-(AU)	-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE174651.003	LB140163.032		Naphthalene	mg/kg	0.1	<0.1	4	101	1
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-	1
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-	1
			Acenaphthylene	mg/kg	0.1	<0.1	4	110	1
			Acenaphthene	mg/kg	0.1	<0.1	4	99	1
			Fluorene	mg/kg	0.1	<0.1	-	-	1
			Phenanthrene	mg/kg	0.1	<0.1	4	99	1
			Anthracene	mg/kg	0.1	<0.1	4	95	1
			Fluoranthene	mg/kg	0.1	0.2	4	94	1
			Pyrene	mg/kg	0.1	0.2	4	107	1
			Benzo(a)anthracene	mg/kg	0.1	0.1	-	-	1
			Chrysene	mg/kg	0.1	<0.1	-	-	1
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	-	-	1
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-	1
			Benzo(a)pyrene	mg/kg	0.1	0.1	4	110	1
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-	1
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	1
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-	1
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td>1</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-	1
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td><td>1</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	1
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td>1</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	1
			Total PAH (18)	mg/kg	0.8	<0.8	-	-]
	_	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	-	86]
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	88]
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	82]
Total Recoverabl	e Elements in Soil/Wast	te Solids/Mate	rials by ICPOES				Method: M	E-(AU)-[ENV]/	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE174622.044	LB140235.004		Arsenic, As	mg/kg	3	53	8	50	89
			Cadmium, Cd	mg/kg	0.3	49	<0.3	50	97
			Chromium, Cr	mg/kg	0.3	66	16	50	100
			Copper, Cu	mg/kg	0.5	65	12	50	105
			Lead, Pb	mg/kg	1	66	20	50	93
			Nickel, Ni	mg/kg	0.5	53	4.3	50	97
			Zinc, Zn	mg/kg	0.5	80	32	50	97
Trace Metals (Dis	ssolved) in Water by ICF	PMS					Ме	thod: ME-(AU)	-[ENV]AN318
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover <u>y</u> %
SE174401A.01	LB140276.004		Zinc. Zn	ua/L	5	24	<5	20	108

TRH (Total Recoverable Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE174651.003	LB140163.031		TRH C10-C14	mg/kg	20	<20	40	113
			TRH C15-C28	mg/kg	45	<45	40	108
			TRH C29-C36	mg/kg	45	<45	40	73
			TRH C37-C40	mg/kg	100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	113
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	90
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE174622.013	LB140161.004	Monocyclic	Benzene	mg/kg	0.1	2.2	<0.1	2.9	76
		Aromatic	Toluene	mg/kg	0.1	2.2	<0.1	2.9	74
			Ethylbenzene	mg/kg	0.1	2.0	<0.1	2.9	69
			m/p-xylene	mg/kg	0.2	4.1	<0.2	5.8	71
			o-xylene	mg/kg	0.1	2.0	<0.1	2.9	69

Method: ME-(AU)-[ENV]AN403

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Units LOR Result Origin al Spike Recovery% Parameter SE174622.013 LB140161.004 Polycyclic Naphthalene mg/kg 0.1 < 0.1 <0.1 Dibromofluoromethane (Surrogate) Surrogates mg/kg 3.9 3.9 77 4.0 80 d4-1,2-dichloroethane (Surrogate) 3.5 mg/kg d8-toluene (Surrogate) mg/kg 3.8 3.8 77 -Bromofluorobenzene (Surrogate) 3.7 3.6 73 mg/kg Totals Total Xylenes 0.3 6.1 <0.3 mg/kg Total BTEX 0.6 <0.6 mg/kg 12 VOCs in Water Method: ME-(AU)-[ENV]AN433 LOR Spike Recovery% QC Sample Units Original Sample Number Parameter SE174554.002 LB140176.022 45.45 0.5 <0.5 99 Monocyclic Benzene µg/L Aromatic Toluene µg/L 0.5 <0.5 45.45 101 Ethylbenzene µg/L 0.5 <0.5 45.45 93 m/p-xylene <1 90.9 97 µg/L 1 < 0.5 45.45 o-xylene μg/L 0.5 98 Polycyclic Naphthalene µg/L 0.5 <0.5 Dibromofluoromethane (Surrogate) 5.6 80 Surrogates µg/L d4-1,2-dichloroethane (Surrogate) µg/L 5.4 82 d8-toluene (Surrogate) 4.9 108 µg/L Bromofluorobenzene (Surrogate) 5.1 96 µg/L Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Recovery% QC Sample Sample Number Parameter Units LOR Result Original Spike SE174622.013 LB140161.004 TRH C6-C10 mg/kg 25 <25 <25 24.65 88 TRH C6-C9 20 <20 <20 23.2 83 mg/kg Dibromofluoromethane (Surrogate) Surrogates mg/kg 39 39 77 4.0 80 d4-1,2-dichloroethane (Surrogate) 3.5 mg/kg 77 d8-toluene (Surrogate) mg/kg 3.8 3.8 Bromofluorobenzene (Surrogate) mg/kg 3.7 3.6 73 VPH F 0.1 Benzene (F0) 2.2 <0.1 mg/kg TRH C6-C10 minus BTEX (F1) 25 <25 <25 7.25 128 Bands mg/kg Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Units LOR Spike Recovery% Parameter Original SE174554.007 LB140176.023 TRH C6-C10 50 <50 946.63 91 µg/L TRH C6-C9 µg/L 40 <40 818.71 93 Surrogates Dibromofluoromethane (Surrogate) 5.7 84 µg/L d4-1,2-dichloroethane (Surrogate) 5.5 93 µg/L d8-toluene (Surrogate) µg/L 5.1 -108 -Bromofluorobenzene (Surrogate) µg/L 5.0 103 VPH F Benzene (F0) 0.5 <0.5 µg/L TRH C6-C10 minus BTEX (F1) 639.67 Bands µg/L 50 <50 87

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.